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ABSTRACT

Automated profiling of nuclear architecture, in histology
sections, can potentially help predict the clinical outcomes.
However, the task is challenging as a result of nuclear pleo-
morphism and cellular states (e.g., cell fate, cell cycle), which
are compounded by the batch effect (e.g., variations in fix-
ation and staining). Present methods, for nuclear segmen-
tation, are based on human-designed features that may not
effectively capture intrinsic nuclear architecture. In this pa-
per, we propose a novel approach, called sparsity constrained
convolutional regression (SCCR), for nuclei segmentation.
Specifically, given raw image patches and the corresponding
annotated binary masks, our algorithm jointly learns a bank
of convolutional filters and a sparse linear regressor, where
the former is used for feature extraction, and the latter aims
to produce a likelihood for each pixel being nuclear region
or background. During classification, the pixel label is sim-
ply determined by a thresholding operation applied on the
likelihood map. The method has been evaluated using the
benchmark dataset collected from The Cancer Genome Atlas
(TCGA). Experimental results demonstrate that our method
outperforms traditional nuclei segmentation algorithms and
is able to achieve competitive performance compared to the
state-of-the-art algorithm built upon human-designed features
with biological prior knowledge.

Index Terms— Nuclear/Background classification, con-
volutional neural network, sparse coding, H&E tissue section

1. INTRODUCTION

Nuclear morphometry reflects cell type, aberration in genome,
and potential stress as a result of changes in the micro-
environment. For example, in Glioblastoma Multiforme
(GBM), nuclear segmentation can help differentiate round
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oligodendroglioma from elongated and irregular morphology
of astrocytoma. In general, (i) cancer nuclei tend to be larger,
and if coupled with high chromatin content, they may indi-
cate aneuploidy; (ii) cellular density can be the result of rapid
proliferation; (iii) nuclear texture can be the surrogate for
fluctuation of heterochromatin patterns; and (iv) cytoplasmic
signature (immediately around the nucleus) can reveal stress
related macromolecules that are being secreted. Furthermore,
nuclear heterogeneity can potentially play an important role
on survival and response to therapy. If nuclear segmentation
is successful, it then can be applied to a large scale cohort
of hematoxylin and eosin (H&E) stained histology sections,
for morphometric subtyping and subsequently the associa-
tion of each computed subtype to the clinical information.
Simultaneously, derived representations (e.g., meta-features),
from cell-by-cell analysis, can also be leveraged to probe for
heterogeneity and its underlying molecular basis, which can
help reveal tumor plasticity (e.g., adaptation to environmen-
tal factors), potential peripheral molecular drivers, and drug
resistivity.

It is well known that automated segmentation is typi-
cally hindered by large amount of technical variations and
biological heterogeneities, which are prevalent within large-
scale datasets, such as The Cancer Genome Atlas (TCGA).
In this paper, we propose a novel approach, called sparsity
constrained convolutional regression (SCCR) to potentially
test the limit on the performance of segmentation techniques
and to overcome the intrinsic complexities of the problem per
previous research [1–7]. Given raw image patches and the
corresponding annotated binary masks, SCCR jointly learns
a convolutional filter bank and a linear mapping with sparsity
constraint. The filter bank is a set of specialized feature detec-
tors and is applied to extract pixel-wise feature vectors. The
convolutional regression prediction is computed as the inner
product between the feature vector and learned weights. By
applying the prediction score into a simple decision function,
the pixel label can then be determined.

Organization of this paper is as follows: Section 2 reviews
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previous research. Section 3 describes the details of the pro-
posed framework. Section 4 presents our preliminary exper-
imental results. Lastly, Section 5 concludes the paper and
points out future directions.

2. RELATED WORK

The major difficulties towards accurate nuclei segmentation
are technical variations (e.g., fixation, staining) and biolog-
ical heterogeneities (e.g., cell type, cell state). To address
this challenging problem, researchers have made a significant
amount of effort by introducing techniques from image pro-
cessing, computer vision and machine learning. Some repre-
sentative approaches are fuzzy clustering [1], adaptive thresh-
olding followed by morphological filtering [2], hybrid color
and texture analysis followed by learning and unsupervised
clustering [3], color separation followed by optimum thresh-
olding and learning [4], level set method combining gradi-
ent information [5], graph cut method based on seed detec-
tion [6]. Color decomposition is a common preprocessing
technique to accentuate the nuclear dye. Thresholding and
clustering are based on the assumption that all nuclear re-
gions in the image have consistent chromatin content, which
in practice, however, does not hold, due to the following rea-
sons: 1) different cell type and cell state may cause signifi-
cant variations in chromatin content; 2) the overlapping and
clumping of cells may cause distortion to the underlying chro-
matin content. In addition, aforementioned methods are usu-
ally applied to a small dataset collected from a single labo-
ratory and therefore their capability of overcoming technical
variations is limited.

Recent years have witnessed increasing popularity of un-
supervised feature learning due to its superior performance in
many computer vision tasks [8–13]. Therefore, we are moti-
vated to explore its capability for nuclei segmentation.

3. PROPOSED METHOD

3.1. Training Algorithm

We consider the nuclei segmentation as a binary classifica-
tion problem at pixel level. Let X =

{
xi
}N

i=1
be a train-

ing set containing N 2D images with dimension m × n. Let
Y =

{
yi
}N

i=1
be the set of N binary masks, where yi is an

m × n binary matrix corresponding to image xi, and each
pixel yij,k ∈ {0, 1} in yi indicates the label of the pixel xi

j,k

in image xi. Here, we use yij,k = 1 to denote the nuclear
region and use yij,k = 0 to represent the background. Let
D = {dk}Kk=1 be the 2D convolutional filter bank consisting
of K filters, where each dk is an h× h convolutional kernel.
Let w = [w1, . . . , wK ]T ∈ RK be the vector containing K
linear combination coefficients, where the kth coefficient wk

is related to the kth filter dk ∈ D. Our goal therefore is si-

multaneously achieving two objectives: (I) to learn a set of
nuclei feature detectors D that can capture intrinsic cellular
morphometric patterns, and (II) to elucidate a sparse repre-
sentation w, which maps the feature vector extracted at each
pixel to its label. The optimization problem is formulated as

min
D,w

L =

N∑
i=1

∥∥∥∥∥yi −
K∑

k=1

wkσ
(
dk ∗ xi

)∥∥∥∥∥
2

F

+ α
K∑

k=1

∥dk∥2F + β ∥w∥1 (1)

where the first term represents the segmentation error, the sec-
ond term is a regularization term for penalizing the model
complexity in terms of filter bank energy, and the third term
is ℓ1 regularization term included for enforcing the linear rep-
resentation vector w to be sparse; α, β are positive regular-
ization constants; σ denotes the sigmoid function; ∗ is the 2D
convolution operator. Note that in contrast to traditional con-
volutional neural network, our optimization object includes
the ℓ1 regularization term which enables feature selection [14]
and thus allows the filters to capture salient nuclear patterns.

We solve Eq. (1) by alternatively optimizing the two vari-
ables, i.e., iteratively performing the two steps, that is, first
compute w and then update D. For the purpose of handling
large-scale dataset, we follow the mini-batch based training
protocol [15], i.e., in each iteration, computing the gradient
based on a small subset of the dataset. Specifically, we use
the conjugate gradient method [16] to solve for the sparse
representation vector w. On updating the convolutional filter
bank D, we use the Limited memory BFGS (L-BFGS) for ef-
ficient estimation of the gradient. The optimization procedure
is sketched in Algorithm 1. Alternative methods for updating
the dictionary can be found in [17, 18]. Note that the objec-
tive of Eq. (1) is convex with respect to w but it is not con-
vex with respect to D due to the nonlinear sigmoid function;
therefore, optimization can only guarantee the convergence to
a local minima. However, in practice, achieving local minima
is sufficient to generate satisfactory performance. Figure 1
illustrates a subset of learned filters from the TCGA segmen-
tation benchmark dataset.

3.2. Decision Function

Having trained the proposed SCCR model, a test image x of
dimension p× q can be labeled in three steps. First, compute
the convolutional regression prediction as

z =
K∑

k=1

wkσ (dk ∗ x) (2)

Second, feed the prediction z into sigmoid function to
squash the value of every pixel within the range of (0, 1). Fi-
nally, the label of pixel at location (i, j) for all i = 1, . . . , p
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Fig. 1: 21×21 filters learned from the TCGA segmentation benchmark dataset.

Algorithm 1 Training Algorithm

Input: Training image set X, training binary mask set Y,
filter bank size K, mini-batch size T , regularization con-
stants α and β

Output: Convolutional filter bank D, coefficient vector w
1: Initialize: D ∼ N (0, 1), w← 0
2: repeat
3: Generate a random index set Ω ⊂ {1, 2, . . . , N} con-

taining |Ω| = T indices
4: Fixing D, compute w by solving

w ← argmin
w

∑
i∈Ω

∥∥∥∥yi −
K∑

k=1

wkσ
(
dk ∗ xi

)∥∥∥∥2
F

+

β ∥w∥1
5: Fixing w, update D over the same training subset as

D← D− µ∇DL(D,w)
6: until Convergence (maximum iterations reached or ob-

jective function ≤ threshold)

and j = 1, . . . , q is predicted according to the following de-
cision rule

Label(xi,j) =

{
1 if σ(zij) ≥ 0.5
0 otherwise

(3)

where xi,j and zi,j represent the pixel at location (i, j) in x
and z respectively.

4. EXPERIMENT

The Cancer Genome Atlas (TCGA) is a publicly accessible
repository providing a rich amount of whole mount tumor
sections that are collected from different laboratories. Among
the images, there exist significant technical and biological
variations. The proposed SCCR is evaluated over 21 1000-by-
1000 Glioblastoma Multiforme (GBM) image samples (20X),
which are manually selected to capture the diversity in the
cohort. Each image is annotated as a binary mask of nuclei

Fig. 2: GBM Examples. First column: original images. Second column: predictions by
SCCR. Third column: final segmentation results.

Table 1: Comparison of Segmentation Results.

Method Precision Recall F-Score
SCCR 0.77 0.81 0.790

MRGC-MultiScale [21] 0.77 0.82 0.794

MRGC [21] 0.79 0.78 0.785

Chang et al. [20] 0.78 0.65 0.709

Sonal et al. [22] 0.69 0.75 0.719

versus background. As a pre-processing step, color decompo-
sition [19] was adopted to accentuate the nuclear dye, which
generates two frames (i.e., the nuclear and the protein chan-
nels) from the original RGB image. For the task of segmen-
tation, only the nuclear channel is used.

From the 21 image samples, we randomly cropped 1400
image patches 1 and the corresponding binary masks as train-
ing set. The image patches and the binary masks are of size
64-by-64. For training, we empirically set K = 1500, T =
200, α = 10−4, β = 0.1. We evaluate the proposed SCCR us-
ing all the 21 1000-by-1000 images and compare it with sev-
eral methods reported in the literature [20–22]. The results are
summarized in Table 1. Our method outperforms traditional
nuclei segmentation algorithms [20, 22] and is very competi-
tive with one of the state-of-the-art algorithm [21]. Note that
unlike the algorithm in [21], which is built upon human en-
gineered prior knowledge. Proposed SCCR is a generic fea-
ture learning model and may be applicable to segmentation
tasks of other tumor types. Figure 2 illustrates some exam-
ples of the original images, corresponding SCCR predictions,
and final segmentation results. And the computational cost
per image (1000-by-1000 pixels) is less than 40 seconds.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method (SCCR) for nu-
clei segmentation. The proposed method addresses the nu-
clei segmentation as a pixel classification problem, by jointly

1Image patches were cropped at nuclear centers, and ∼ 10% nuclei were
randomly selected for training.
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learning a convolutional filter bank and a linear mapping with
sparsity constraint. Compared to previous frameworks with
human-engineered features, our method does not rely on prior
knowledge and therefore could be potentially applicable to
segmentation tasks of different tumor types. Experimental re-
sults demonstrate that SCCR outperforms several traditional
nuclei segmentation algorithms and achieves very competi-
tive performance compared to one of the state-of-the-art ap-
proaches based on biological prior knowledge.

Future work includes i) increasing the training scale for
possible improvement of performance; ii) applying SCCR
on other benchmark datasets (both 2D and 3D) for extensive
evaluation; and iii) further evaluating the proposed method
and comparing with deep learning models (e.g., convolutional
neural network [8])
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