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Abstract—Automated analysis of whole mount tissue sections
can provide insights into tumor subtypes and the underlying
molecular basis of neoplasm. However, since tumor sections are
collected from different laboratories, inherent technical and bio-
logical variations impede analysis for very large datasets such as
The Cancer Genome Atlas (TCGA). Our objective is to charac-
terize tumor histopathology, through the delineation of the nuclear
regions, from hematoxylin and eosin stained tissue sec-
tions. Such a representation can then be mined for intrinsic
subtypes across a large dataset for prediction and molecular asso-
ciation. Furthermore, nuclear segmentation is formulated within a
multi-reference graph framework with geodesic constraints, which
enables computation of multidimensional representations, on a
cell-by-cell basis, for functional enrichment and bioinformatics
analysis. Here, we present a novel method, multi-reference graph
cut (MRGC), for nuclear segmentation that overcomes technical
variations associated with sample preparation by incorporating
prior knowledge from manually annotated reference images and
local image features. The proposed approach has been validated
on manually annotated samples and then applied to a dataset of
377 Glioblastoma Multiforme (GBM) whole slide images from 146
patients. For the GBM cohort, multidimensional representation
of the nuclear features and their organization have identified 1)
statistically significant subtypes based on several morphometric
indexes, 2) whether each subtype can be predictive or not, and 3)
that the molecular correlates of predictive subtypes are consistent
with the literature.
Data and intermediaries for a number of tumor types (GBM,

low grade glial, and kidney renal clear carcinoma) are available
at: http://tcga.lbl.gov for correlation with TCGA molecular data.
The website also provides an interface for panning and zooming
of whole mount tissue sections with/without overlaid segmentation
results for quality control.

Index Terms—Molecular pathology, nuclear segmentation, sub-
typing, tumor histopathology.
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I. INTRODUCTION

O UR main motivation for quantifying morphometric
composition from histology sections is to gain insight

into cellular morphology, organization, and sample tumor
heterogeneity in a large cohort. In tumor sections, robust repre-
sentation and classification can identify mitotic cells, cellular
aneuploidy, and autoimmune responses. More importantly, if
tissue morphology and architecture can be quantified on a very
large scale dataset, then it will pave the way for constructing
databases that are prognostic, the same way that genome-wide
array technologies have identified molecular subtypes and
predictive markers. Genome-wide molecular characterization
(e.g., transcriptome analysis) has the advantage of standardized
techniques for data analysis and pathway enrichment, which
can enable hypothesis generation for the underlying mecha-
nisms. However, array-based analysis 1) can only provide an
average measurement of the tissue biopsy, 2) can be expen-
sive, 3) can hide occurrences of rare events, and 4) lacks the
clarity for translating molecular signature into a phenotypic
signature. Though nuclear morphology and context are difficult
to compute as a result of intrinsic cellular characteristic and
technical variations, histology sections can offer insights into
tumor architecture and heterogeneity (e.g., mixed populations),
in addition to, rare events. Moreover, in the presence of a very
large dataset, phenotypic signatures can be used to identify
intrinsic subtypes within a specific tumor bank through un-
supervised clustering. This facet is orthogonal to histological
grading, where tumor sections are classified against known
grades. The tissue sections are often visualized with hema-
toxylin and eosin stains, which label DNA content (e.g., nuclei)
and protein contents, respectively, in various shades of color.
Even though there are inter- and intra-observer variations [1],
a trained pathologist can characterize the rich content, such
as the various cell types, cellular organization, cell state and
health, and cellular secretion. If hematoxylin and eosin
stained tissue sections can be quantified in terms of cell type
(e.g., epithelial, stromal), tumor subtype, and histopathological
descriptors (e.g., necrotic rate, nuclear size and shape), then a
richer description can be linked with genomic information for
improved diagnosis and therapy. This is the main benefit of
histological imaging since it can capture tumor architecture.
Ultimately, our goal is to mine a large cohort of tumor data

in order to identify morphometric indexes (e.g., nuclear size)
that have prognostic and/or predictive subtypes. The Cancer
Genome Atlas (TCGA) offers such a collection; however, the
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Fig. 1. Work flow in nuclear segmentation for a cohort of whole mount tissue
sections.

main issue with processing a large cohort, is the inherent varia-
tions as a result of 1) the sample preparation protocols (e.g., fix-
ation, staining), practiced by different laboratories, and 2) the
intrinsic tumor architecture (e.g., cell type, cell state). For ex-
ample, with respect to heterogeneity in the tumor architecture,
the nuclear color in the space found in one tissue section
may be similar to the cytoplasmic color in another tissue sec-
tion. Simultaneously, the nuclear color intensity (e.g., chromatin
content) can vary within a whole slide image. Therefore, image
analysis should be tolerant and robust, with respect to variations
in sample preparation and tumor architecture, within the entire
slide image and across the tumor cohort.
Stained whole mount tissue sections are scanned at either

at 20X or 40X, which results in larger images in the order of
40 k 40 k pixels or higher. Each image is partitioned into
blocks of 1 k 1 k pixels for processing, and cells at the borders
of each block are excluded during the processing. The details
of the computational pipeline can be found in our earlier paper
[2]. Our approach evolved from our observation that simple
color decomposition and thresholding misses or overestimates
some of the nuclei in the image, i.e., nuclei with low chromatin
contents are excluded. Further complications ensue as a result
of diversity in nuclear size and shape (e.g., the classic scale
problem).
The general approach is shown in Fig. 1, where the primary

novelty is in the image-based modeling of inherent ambigui-
ties that are associated with technical variations and biolog-
ical heterogeneity. Image-basedmodeling captures prior knowl-
edge from a diverse set of annotated images (e.g., a dictionary)
needed in order to model the foreground and background repre-
sentations. Each annotated image is independent of other im-
ages and signifies one facet (e.g., color space, nuclear shape
and size) of the diversity within the cohort. Moreover, each
image is represented in the feature-space as the Gaussian Mix-
ture Model (GMM) of the Laplacian of Gaussian (LoG) and

responses. Collectively, the reference dictionary of an-
notated images provides the means for color normalization and
for capturing global statistics for segmenting test images. The
computed global statistics can then be coupled, through a graph

cut formulation, with the intrinsic local image statistics and spa-
tial continuity for binarization. Having segmented an input test
image, each segmented foreground region is subsequently val-
idated for nuclear shape. If needed, it is decomposed through
geometric reasoning. A secondary novelty is in the details of
the computational pipeline. For example, we introduce the con-
cept of 1) “color map normalization” for registering a test image
against each of the images in the reference library, and 2) “blue
ratio image” for mapping images into the gray space;
thus, LoG responses can be computed efficiently in one channel.
All important free parameters are selected through cross-valida-
tion. Thus far, close to 1000 whole slide images have been pro-
cessed, and the data has been made publicly available through
our website at http://tcga.lbl.gov. In addition, segmentation re-
sults, from the whole mount tissue sections, are available for
quality control through a web-based zoomable interface.
Essentially, nuclear segmentation provides the basis for mor-

phometric representation on a cell-by-cell basis. As a result,
tumor histology can be represented as a meaningful data matrix,
where well-known bioinformatics and statistical tools can be
readily applied for hypotheses generation. For example, a large
cohort facilitates tumor subtyping based on computed morpho-
metric features. Each subtype can then be 1) tested for its prog-
nostic value, and 2) utilized for identifying molecular basis of
each subtype for hypothesis generation. In the case of GBM,
prognostic and/or predictive subtypes have also been posted on
our website.
Organization of this paper is as follows. Section II reviews

previous research with a focus on quantitative representation of
the sections for translational medicine. Sections III and
IV describes the details of the image-based modeling for nu-
clear segmentation and experimental validation, respectively.
Section V examines one application of nuclear segmentation of
morphometric subtyping and molecular association for hypoth-
esis generation. Lastly, Section VI concludes the paper.

II. REVIEW OF PREVIOUS WORK

Several excellent reviews for the analysis of histology sec-
tions can be found in [3] and [4]. From our perspective, four dis-
tinct works have defined the trends in tissue histology analysis.
1) One group of researchers proposed nuclear segmentation and
organization for tumor grading and/or prediction of tumor re-
currence [5]–[8]. 2) A second group of researchers focused on
patch level analysis (e.g., small regions) [9]–[11], using color
and texture features, for tumor representation. 3) A third group
focused on block-level analysis to distinguish different states of
tissue development using cell-graph representation [12], [13]. 4)
Finally, a fourth group has suggested detection and representa-
tion of the auto-immune response as a prognostic tool in cancer
[14]. In contrast to previous research, our strategy is based on
processing a large cohort of tumors, to compute morphometric
subtypes, and to examine whether computed subtypes are pre-
dictive of outcome. Since tumor histology is characterized in
terms of nuclear and cellular features, a more detailed review of
nuclear segmentation strategies follows.
The main barriers in nuclear segmentation are technical

variations (e.g., fixation) and biological heterogeneity (e.g.,
cell type). These factors are visible in TCGA dataset. Present
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techniques have focused on adaptive thresholding followed by
morphological operators [15], [16]; fuzzy clustering [17], [18];
level set method using gradient information [14], [19]; color
separation followed by optimum thresholding and learning [20],
[21]; hybrid color and texture analysis followed by learning
and unsupervised clustering [6]; and representation of nuclei
organization in tissues [22], [23] that is computed from either
interactive segmentation or a combination of feature detector.
Some applications combine the above techniques; Several ex-
amples are given below. In [24], iterative radial voting [25] was
used to estimate seeds for partitioning perceptual boundaries
between neighboring nuclei. Subsequently, seeds were used to
segment each nucleus through the application of multiphase
level sets [26], [27]. In [28], the input image was initially bina-
rized into foreground and background regions with a graph cut
framework, the seeds were then selected from a binarized image
using a constrained multi-scale LoG filter, with the combined
results being refined using a second iteration of the graph cut.
Similarly, in [29], the input image was first normalized through
histogram equalization, and then binarized based on color-tex-
ture extracted from the most discriminant color space. This was
followed by an iterative operation to split touching nuclei based
on concave-points and radial-symmetry. In their experiment,
they had 21 images where five of them were annotated. Nuclei,
in all images, had similar size with high chromaticity. Recently,
a spatially constrained expectation maximization algorithm [30]
was demonstrated to be robust to “color nonstandardness” in
histological sections with color being represented in the HSV
space. However, our analysis of the GBM cohort indicates that
strict incorporation of color and spatial information will not
be sufficient as demonstrated in Section IV-B (MRGC versus
MRGC-CF). A more related work, described in [31], was based
on a voting system that uses multiple classifiers built from dif-
ferent reference images; we will refer to this method as MCV,
for short, in the rest of the paper. Compared to the previous
approaches, MCV provides a better way to handle the variation
among different batches.However, due to the lack of smoothness
constraints and local statistical information, the classification
results can be noisy and erroneous, as demonstrated in Fig. 8.
Some of these concepts have also been utilized in our earlier
paper [2], but the results posted on our website are for the
current implementation outlined in this paper.
In summary, the main limitations of the above techniques are

that they are often applied to a small dataset that originate from
a single laboratory, ignore technical variations that are mani-
fested in both nuclear and background signals, and are insensi-
tive to cellular heterogeneity (e.g., variation in chromatin con-
tents). Our goal is to address these issues by processing whole
mount tissue sections, from multiple laboratories, to construct
a large database of morphometric features, and to enable sub-
typing and genomic association.

III. APPROACH

Details of the proposed approach are shown in Fig. 2, which
leverages several key observations for segmenting nuclear re-
gions: 1) global variations across a large cohort of tissue sec-
tions can be captured by a representative set of reference im-
ages, 2) local variations within an image can be captured by

local foreground(nuclei)/background samples detected by LoG
filter, and 3) color normalization, against a reference image, re-
duces variations in image statistics and batch effects between a
test and a reference image. These concepts are integrated within
a graph cut framework to delineate nuclei or clumps of nuclei
from the background. Having performed foreground and back-
ground segmentation, we then partitioned potential clumps of
nuclei through geometric reasoning. In the rest of this section,
we summarize (a) the representation of prior models from a di-
verse set of reference images, (b) the methodology for color
normalization, (c) an effective approach for color transforma-
tion for dimensionality reduction, (d) the details of feature ex-
traction from each test image, (e) the multi-reference graph cut
formalism for nuclei/background separation, and (f) the parti-
tioning of a clump of nuclei into individual nucleus.

A. Construction and Representation of Priors

The purpose of this step is to capture the global variations
for an entire cohort from a reference library. For bioinformatics
analysis, the target dataset consists of 377 individual tissue sec-
tions, and a representative of reference images
of 1 k 1 k pixels at 20X have been selected. Each reference
image is selected to be an exemplar of tumor phenotypes based
on staining and morphometric properties. Therefore, it is rea-
sonable to suggest that each reference image has its own unique
feature space, in terms of and LoG responses, which leads
to feature spaces for all reference images

(1)
where and are feature space and fea-
ture space for the th reference image, . Subse-
quently, each reference image is hand segmented and processed
with a filter (please refer to Section III-C for the details
on our LoG integration), at a single scale, followed by the col-
lection of foreground (nuclei) and background statistics in both
the space and LoG response. Our experience indicates
that even within a single reference image, there could be distinct
modes in terms of color and nuclear size. One way to cap-
ture these heterogeneities is to represent foreground and back-
ground distributions with GMM. Hence, the conditional prob-
ability for pixel , with feature in the th
feature space, belonging to
can be expressed as a mixture with component densities

(2)

where a mixing parameter corresponds to the weight of
component and . Each mixture component is
a Gaussian with mean and covariance matrix in the corre-
sponding feature space (e.g., 3 3 and 1 1 matrices in
and single scale LoG spaces, respectively)

(3)

and for were estimated by expectation
maximization algorithm [32].
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Fig. 2. Steps in nuclear segmentation.

B. Color Normalization

The purpose of color normalization is to close the gap, in color
space, between an input test image and a reference image. As a
result, the prior models, constructed from each reference image,
can be better utilized. We evaluated a number of color nor-
malization methods and chose the color map normalization de-
scribed in [31] for its effectiveness in handling histological data.
• Let input image and reference image have and
unique color triplets in terms of , respectively.

• Let be a monotonic function, which maps the color
channel intensity, , from Image to a
rank that is in the range .

• Let be the color of pixel , in image , and
be the ranks for each color

channel intensity.
• Let the color channel intensity values , , and ,
from image , have ranks

As a result of color map normalization, the color for pixel :
, will be normalized as . In contrast

to standard quantile normalization, which utilizes all pixels in
the image, color map normalization is based on the unique color
in the image, thereby, excluding the frequency of any color.
Our experience suggests that this method is quite powerful
for normalizing histology sections, since the color frequencies
vary widely as a result of technical variations and tumor het-
erogeneity. Examples of color map normalization can be found
in Fig. 2.

C. Color Transformation

In order to reduce the computational complexities for inte-
grating the LoG responses, the space is transformed into
a gray level image to accentuate the nuclear dye. While several
techniques for color decomposition have been proposed [34],
[33], they are either too time-consuming or do not yield favor-
able outcomes. The color transformation policy needs to en-
hance the nuclear stain while attenuating the background stain.
One way to realize such a transformation is by:

, where , , and are
the blue, red, and green intensities at position . We refer
to this transformation as the blue ratio image in the rest of this
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Fig. 3. (a) Two diverse pinhole of tumor signatures. (b) Decompositions by
[33]. (c) Blue ratio images.

manuscript. In this formulation, the first and second terms ac-
centuate and attenuate nuclear and background signals, respec-
tively. Subsequently, the LoG responses are always computed
at a single scale from the blue ratio image. Fig. 3 demonstrates
that the blue ratio image method has an improved performance
compared to an alternative method [33].

D. Feature Extraction

Our approach integrates both color and scale information,
where the scale is encoded by the LoG response.
1) Normalization of the input test image against every refer-
ence image, as described in Section III-B.

2) Conversion of each normalized image into the blue ratio
image, as described in Section III-C.

3) Application of a LoG filter on each of the blue ratio images,
at a single scale.

4) Representation of each pixel, from the test image, by its
color in each of the normalized images and LoG

response from each of the blue ratio images.
As a result, each pixel in the test input image is represented by

features, where the first features are colors from the
normalized images, and the last features are LoG responses
computed from the blue ratio of the normalized images. All
features are assumed to be independent per selection of images
in Section III-A. The rational for integrating both color and scale
information is that: 1) in some cases, color information is in-
sufficient to differentiate nuclear regions from background; 2)
the scales (e.g., LoG responses) of the background structure and
nuclear region are typically different; and 3) the nuclear region
responds well to blob detectors, such as a LoG filter [28].

E. Multi-Reference Graph Cut Model

In this section, we first present the background material on
graph cut formalism, and then proceed to the details of the
image-based modeling for incorporating intrinsic and extrinsic
variations.
Within the graph cut formulation, an image is represented as

a graph , where is the set of all nodes, and is
the set of all arcs connecting adjacent nodes. Usually, the nodes
and edges correspond to pixels and their adjacency relation-
ship, respectively. Additionally, there are special nodes known
as terminals, which correspond to the set of labels that can be
assigned to pixels. In the case of a graph with two terminals, the
terminals are referred to as the source (S) and the sink (T), which

correspond to specific labels. The labeling problem is to assign
a unique label (0 for background, and 1 for foreground) for
each node , and the image cutout is performed by mini-
mizing the Gibbs energy [35]

(4)

where is the likelihood energy, encoding the data
fitness cost for assigning to , and is
the prior energy, denoting the cost when the labels of adjacent
nodes, and , are and , respectively; is the weight for

.
The optimization algorithms could be classified into two

groups: Goldberg–Tarjan “push-relabel” methods [36], and
Ford–Fulkerson “augmenting paths” [37]. The details of the
two methods can be found in [38].
We recognize that the training data set cannot fully capture the

intrinsic variations of the nuclear signature. Therefore, the data
fitness term is expressed as a combination of the intrinsic local
probability map and learned global property map. The local
probability map has the advantage of capturing local intrinsic
image property in the absence of colormap normalization, thus,
diversifying the data fitness term. Equation (1) is rewritten as

(5)
where is the global data fitness term encoding the fitness
cost for assigning to , is the local data fitness term en-
coding the fitness cost for assigning to . Each term together
with the optimization process is discussed below.
1) Global Fitness Term: The global fitness is established

based on manually annotated reference images. Let us assume
reference images: , , and for each reference

image, GMMs are used to represent the nuclei and background
in both space and LoG response space, respectively:

, , in which , and the
first are for space, and the last are
for response space. Details can be found in Section III-A.
An input test image is first normalized as with respect to

every reference image, . Subsequently, color and
responses of are collected to construct features per pixels,
where the first features are from the normalized color
space, and the second features are from response.
• Let be a node corresponding to a pixel.
• Let be th feature of .
• Let be the weight of response.
• Let be the probability function of being

• Let be the weight for
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where is norm, is the histogram function on
a single color channel of an image. Intu-
itively, measures similarity between two histograms de-
rived from and , which are represented with 20 bins.
Based on our experiments, the s become stable when the
number of bins reaches 20; conversely, histograms with
less than 20 bins are considered to have insufficient res-
olution. The similarity parameter weighs the fitness of the
prior model, constructed from , to the features extracted
from the normalized image .

The global fitness term is now defined as

(6)

where the first and second terms integrate normalized color fea-
tures and responses, respectively.
2) Local Fitness Term: While the global fitness term utilizes

both color and LoG information in the normalized space, it does
not utilize information in the original color space of the input
image. As a result, local variation may be lost for a number of
reasons, i.e., nonuniformity in the tissue sections, local lesions,
etc. The local data fitness of a pixel, , is computed from fore-
ground and background seeds in a local neighborhood around
that corresponds to peaks detected by a LoG filter on the blue
ratio image, where positive and negative peaks often, but not
always, correspond to the background and foreground (nuclei),
respectively. The accuracy can be improved by a cascade of fil-
ters as follows.
1) Seeds detection: This step aims to collect local foreground
and background seeds by incorporating local and global
image statistics. Typical positive and negative peak re-
sponses, associated with the LoG filter, are shown in
Fig. 4(a). Most of the time, the LoG filter detects fore-
ground and background locations correctly, but there is a
potential for errors. The protocol consists of three steps.
a) Create a blue ratio image (Section III-C): In this trans-
formed space, the peak of the intensity histogram al-
ways corresponds to the preferred frequency of the
background intensity as shown in Fig. 4(b).

b) Construct distributions of the foreground and back-
ground: Apply the LoG filter on the blue ratio image,
detect peaks, and construct a distribution of the blue
ratio intensity at the peaks corresponding to the neg-
ative and positive LoG responses. A small subset of
seeds can be mislabeled, but most can be corrected in
the following step.

c) Constrain the seed selection: Seeds (e.g., peaks of the
LoG response) are constrained by three criteria: 1) the
LoG responses must be above a minimum conserva-
tive threshold for removing strictly noisy artifacts; 2)
the intensity associated with the peak of the negative
LoG responses (e.g., foreground peaks) must concur
with the background peak, specified in step (a); and
3) within a small neighborhood of , the min-
imum blue ratio intensity, at the location of negative

Fig. 4. (a) An example of the LoG response for detection of foreground (green
dot) and background (blue dot) signals indicates an excellent performance on
the initial estimate. (b) Histogram of the blue ratio intensity derived from image
(a) indicates that the peak of the distribution corresponds to the occurrence fre-
quency of the background pixels.

Fig. 5. LoG responses can be either positive (e.g., potential background)
or negative (e.g., foreground or part of foreground) in the transformed blue
ratio image. In the blue ratio image with the most negative LoG response, the
threshold is set at the minimum intensity.

seeds, is set as the threshold for background peaks, as
shown in Fig. 5.

2) Local foreground/background color modeling: For each
pixel, , foreground and background statistics within a
local neighborhood, , is represented by two GMMs
in the original color space. These GMMs correspond to
the nuclei and background models (e.g., and

), respectively.
The local fitness term is defined as

(7)
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Fig. 6. (a) Eight-neighborhood system: . (b) Contour on eight-neigh-
borhood 2-D grid. (c) One family of lines formed by edges of the graph.

where refers to the feature of node in the original
color space, is the weight for local fitness, is the probability
function of being

3) Smoothness Term: While both local and global data fit-
ness terms are encoded by t-links (links between node and ter-
minals) in the graph, the smoothness term, which ensures the
smoothness of labeling between adjacent nodes, is represented
by n-links (links between adjacent nodes). Here, we adopt the
setup from [39] for n-links, which approximates a continuous
Riemannian metric by a discrete weighted graph so that the
max-flow/min-cut solution for the graph corresponds to a local
geodesic or minimal surface in the continuous case. Consider
a weighted graph constructed in Section III-E: ,
where is the set of image pixels, and is the set of all edges
connecting adjacent pixels.
• Let be a set of vectors for the neighbor-
hood system, where is the neighborhood order, and the
vectors are ordered by their corresponding angle with
respect to the axis, such that

. For example, when , we have
, , , , as shown in

Fig. 6(a).
• Let be the weight for the edge between pixels: and

, where and belong to the same neighborhood system,
and .

• Let be a line formed by the edges in the graph, as shown
in Fig. 6(c).

• Let be a contour in the same 2-D space where the graph
is embedded, as shown in Fig. 6(b).

• Let be the cut metric of

where is the set of edges intersecting contour .
• Let be the Riemannian length of contour .
• Let be the metric (tensor), which continuously varies
over points in the 2-D Riemannian space.

Based on Integral Geometry [40], the Crofton-style formula for
Riemannian length of contour can be written as

where is the unit vector in the direction of the line , and
is a function that specifies howmany times line intersects con-
tour . Following the approach in [39], the local geodesic can

TABLE I
EDGE WEIGHTS FOR THE GRAPH CONSTRUCTION, WHERE IS THE

NEIGHBORHOOD SYSTEM, AND IS THE WEIGHT FOR SMOOTHNESS

Fig. 7. Steps in the delineation of overlapping nuclei: (Top row) identifying
points of maximum curvature where potential folds are formed, (middle row)
formation of partitioning hypotheses through triangulation, (bottom row) step-
wise application of geometric constraints for deleting and pruning edges.

be approximated by the max-flow/min-cut solution
with the following edge weight setting:

(8)

where is the cell-size of the grid, is the angular difference
between the th and th edge lines, ,
and

(9)

where is a unit vector in the direction of
image gradient at point , is the identity matrix, and

4) Optimization: The construction of the graph, with two
terminals, source and sink , is defined in Table I. This graph
is partitioned via the max-flow/min-cut algorithm proposed in
[41] to label the input image into foreground and background.
The optimization method belongs to a class of algorithms based
on augmenting paths, and the details can be found in [41].

F. Nuclear Mask Partitioning

A key observation we made is that the nuclear shape is typ-
ically convex. Therefore, ambiguities associated with the de-
lineation of overlapping nuclei could be resolved by detecting
concavities and partitioning them through geometric reasoning.
The process, shown in Fig. 7, consists of the following steps.
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Fig. 8. Comparison betweenMCV andMRGC (as shown in (c) and (d), respec-
tively) based on the same reference image, as shown in (a). Even though the test
image and the reference image are slightly different in color space, compared
with MCV, MRGC still produces 1) more accurate classification, due to the en-
coding of statistics from test image’s color space via local probability map; 2)
less noisy classification due to the smoothness constrain. (a) Reference image;
(b) test image; (c) results via MCV; (d) results via MRGC.

1) Detection of Points of Maximum Curvature: The con-
tours of the nuclear mask were extracted, and the
curvature along the contour was computed by using

, where and are
coordinates of the boundary points. The derivatives were
then computed by convoluting the boundary with deriva-
tives of Gaussian. An example of detected points of
maximum curvature is shown in Fig. 7.

2) Delaunay Triangulation (DT) of Points of Maximum Cur-
vature for Hypothesis Generation and Edge Removal: DT
was applied to all points of maximum curvature to hypoth-
esize all possible groupings. The main advantage of DT is
that the edges are nonintersecting, and the Euclidean min-
imum spanning tree is a sub-graph of DT. This hypothesis
space was further refined by removing edges based on cer-
tain rules, e.g., no background intersection.

3) Geometric reasoning: Properties of both the hypothesis
graph (e.g., degree of vertex), and the shape of the object
(e.g., convexity) were integrated for edge inference.

This method is similar to the one proposed in our previous
work [42]; however, a significant performance improvement has
been made through triangulation and subsequent geometric rea-
soning. Please refer to [43] for details.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we 1) discuss parameter setting, and 2) eval-
uate performance of the system against previous methods.

A. Experimental Design and Parameter Setting

In order to capture the technical variation, we manually se-
lected and annotated 20 reference images of the size of 1 k 1 k
pixels at 20X, and a subset is shown in Fig. 9. Nuclear segmen-
tation was also performed at 20X, and only the top

Fig. 9. A subset of reference image ROI, with manual annotation overlaid as
green contours, indicating significant amounts of technical variation. Nuclei
with white hollow regions inside are pointed out by arrows.

reference images with the highest weight of were used. Es-
sentially, this was a trade-off between performance and compu-
tational time cost (see in Fig. 13). The number of components
for was selected to be , while the parameters
for were estimated via algorithm. Other parameter
settings were: , , , ,

, and (the scale for both seeds detection
and LoG feature extraction), in which was determined based
on the preferred nuclear size at 20X, was selected to min-
imize the seeds detection error on the annotated reference im-
ages, and all other parameters were selected to minimize the
cross validation error from the following discretization:

, ,
, ,
. The optimal value is relatively small,

which can be attributed to the fact that the global statistics from
the well-constructed reference images, cover most of the hetero-
geneity in our dataset, and the role of local statistics is simply to
assist the global statistics with improved discriminating powers.

B. Evaluation

Two-fold cross validation, with optimized parameter set-
tings, was applied to the reference images, and a comparison
of average classification performance was made between our
approach, random forest [44], and the most related work (Here,
we refer it to MCV: multi-classifier voting, for short) in [31],
as shown in Table II. Our experiment indicates the following.
1) By incorporating both global and local statistics (MRGC
versus MRGC-GF), our system better characterizes the
variation in the data.

2) By incorporating the LoG response as a feature (MRGC
versus MRGC-CF), we can encode the prior scale infor-
mation into the system.
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TABLE II
COMPARISON OF AVERAGE CLASSIFICATION PERFORMANCE AMONG OUR
APPROACH(MRGC), OUR PREVIOUS APPROACH [2], MCV APPROACH IN
[31], AND RANDOM FOREST. FOR MCV, ONLY COLOR IN SPACE
IS USED, WHICH IS IDENTICAL TO [31]. FOR RANDOM FOREST, THE
SAME FEATURES ARE USED: , AND THE PARAMETER

SETTINGS ARE , ,

Fig. 10. A comparison among our approach,MCV, and random forest. (a) Orig-
inal image patch. (b) Detected seeds, green: nuclei region; blue: background. (c)
Local nuclei probability established based on seeds. (d) Classification by our ap-
proach. (e) Classification by MCV. (f) Classification by random forest.

3) As a result, ambiguous background structures are ex-
cluded, which leads to an increase of precision. However,
there is also a decrease in the recall when compared to
MRGC-CF, which is due to the fact that the tiny frag-
ments inside the nuclei, as indicated by Fig. 9, can also be
eliminated.

4) MRGC with multi-scale LoG features (MRGC-MS) has
the best performance.We evaluated LoG responses at three
scales, , to compensate for a wide variation in
the nuclear size. Improvement in segmentation is marginal,
and it comes with a significant increase in the computa-
tional cost of about 40%. The LoG filter is simply used for
seed detection to represent the underlying image statistics,
and as long as a single scale can provide sufficient statis-
tics, multiscale LoG is redundant. Besides, in processing
whole slide images, computational throughput is an impor-
tant factor.

We also provide an intuitive example, shown in Fig. 10,
demonstrating the effectiveness of the local probability map.
It is clear that the local probability map [Fig. 10(c)] helps to
characterize nuclei with the low chromatin content, as shown in
the blue bounding boxes. Another example, shown in Fig. 11,
further demonstrates the effectiveness of our approach on the
segmentation of low chromatin nuclei.
Finally, a comparison of the segmentation performance be-

tween our current approach and our previous approach [2] is
indicated in Table III, where the correct nuclear segmentation is
defined as follows.

Fig. 11. Segmentation on low chromatin nuclei. (a) Original image patch. (b)
Segmentation by our approach.

TABLE III
COMPARISON OF AVERAGE SEGMENTATION PERFORMANCE
BETWEEN OUR CURRENT APPROACH(MRGC), AND OUR

PREVIOUS APPROACH [2], IN WHICH
, AND

• Let be the maximum nuclear size of nuclei
and .

• Let be the amount of overlap between nu-
clei and .

Subsequently, for any nucleus, , from ground truth, if there
is one and only one nucleus, , in the segmentation result, that
satisfies , then is
considered to be a correct segmentation of . The threshold
was set to be .
The reader may question the classification performance since

both precision and recall are not very high. The major reason
is that the ground truth (annotation) for the reference images is
created at the object (nucleus) level, which means the hollow
regions (loss of chromatin content for various reasons) inside
the nuclei will be marked as the nuclear region rather than the
background, as indicated by Fig. 9.

V. ANALYSIS OF TCGA GBM COHORT

Having evaluated the performance of the system, we applied
our method to a cohort of 377 GBM whole slide images, from
146 patients, for bioinformatics analysis. Fig. 12 shows a few
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Fig. 12. Classification and segmentation results indicates tolerance to intrinsic variations. (a) Original images. (b) Nuclear/Background classification results via
our approach(MRGC). (c) Nuclear partition results via geometric reasoning.

snapshots of our classification and segmentation results; Com-
plete results for all the GBM tissue sections (and a few other
tumor types) are available through the NIH web site at http://
tcga-data.nci.nih.gov/tcga/. Following segmentation, each nu-
cleus is represented by a multidimensional feature vector, which
includes over 52 morphometric indexes such as nuclear size,
cellularity, cytoplasmic features, etc., [2]. The density distribu-
tion of each index is then computed per histology section and
aggregated per patient.
A particular aspect of bioinformatics analysis relies on sub-

typing based on a subset of computed morphometric indexes
(e.g., cellular density), where subtyping is performed through
consensus clustering [45], [46]. In our experiment, we evalu-
ated all morphometric indexes and discovered that subtyping

based on 1) nuclear size and cellularity, and 2) nuclear inten-
sity and gradient, are statistically stable, where four and two
subtypes were inferred, respectively. Fig. 14 shows the com-
puted subtypes based on nuclear size and cellularity, where one
of the subtypes is predictive of the outcome based on the clin-
ical data. In addition, the computed subtypes from nuclear in-
tensity and gradient were also predictive of the outcome. The
patients in the GBM cohort received one of the two types of
therapies 1) an intensive therapy with either concurrent radia-
tion and chemotherapy, or four or more cycles of chemotherapy
only, or 2) a less intensive therapy of either nonconcurrent radia-
tion and chemotherapy or less than four cycles of chemotherapy
only [47]. Although the sample size for the patient receiving
the less intensive therapy is small, survival analyses [48] for
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Fig. 13. Top and bottom rows show average classification performance and
computational time as a function of number of reference images used. It is clear
that the top reference images with highest is a reasonable trade-off
between performance and computational time.

Fig. 14. Morphometric subtyping reveals four subtypes based on cellularity
index and nuclear area: (a) visualization of consensus clustering with four clus-
ters; and (b) distribution of cellularity index per subtype.

one of the subtypes in each of the clustering experiments points
to a trend in an improved survival for patients receiving the
more intensive therapy, as shown in Fig. 15. In addition, sev-
eral computed subtypes, based on other morphometric indices,
have also been found to be predictive of the outcome. We also
examined molecular correlates of the predictive subtypes. With
respect to predictive subtype computed from nuclear size and
cellularity indexes, we used moderated t-test [49] and identified
a set of differentially regulated transcripts for subtype 2 (e.g.,
predictive subtype) as shown in Fig. 16. A total of 10 differen-
tially regulated transcripts were then subject to further bioin-
formatics analysis for subnetwork enrichment analysis using
Pathway Logic, which computes and ranks hubs according to
their p-values, as shown in Table IV (e.g., IL1, IL6), which im-
pacts tumor proliferation and migration in both normal and ma-
lignant cells [50], [51] and the recruitment of the immune re-
sponse. The relationships between these hubs and the genes as-
sociated with them are shown in Fig. 17. Among the common
regulators,MAPK1 and FN1, which are involved in the prolifer-
ation, are highly ranked transcripts in TCGA’s gene tracker for
GBM. Furthermore, FN1 is 1) implicated in the invasion and

Fig. 15. Computed subtypes with cellularity and nuclear size is predictive as
a result of more aggressive therapy.

Fig. 16. Heat map representing a subset of differentially regulated transcripts
for Subtype 2.

TABLE IV
KEY HUBS IDENTIFIED THROUGH PATHWAY ENRICHMENT ANALYSIS

angiogenesis, and 2) validated as differentially expressed tran-
scripts in GBM versus benign tumors [52]. Finally, TGFB1 is
well known to be involved in tumor maintenance and progres-
sion through suppression of the immune response and is abun-
dantly produced by GBM [53]. These molecular associations
reflect that morphometric subtyping can hypothesize relevant
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Fig. 17. Subnetwork enrichment analysis, for the predictive subtype in
Fig. 15(a), reveals inflammatory hubs that promote tumor differentiation and
invasiveness in GBM.

transcripts that are potential targets of therapy, which is con-
sistent with current literature. An example being, FN1, and its
role in the induction of angiogenesis. With respect to the predic-
tive subtype computed from nuclear intensity and gradient in-
dexes, subnetwork enrichment analysis revealed a large number
of hubs from a set of differentially regulated transcripts. In this
case, VEGF was discovered to be at the intersection of all path-
ways curated through enrichment analysis. VEGF is well known
to be the hallmark of glioblastoma for the induction ofmicrovas-
culture formation [54] and has been suggested as a therapuetic
target in GBM [55].

VI. CONCLUSION

We have shown that morphometric representation of cellular
architecture from a large cohort of histology sections can
provide new opportunities for hypothesis generation. The main
barriers are the batch effect and tumor heterogeneity which
hinders nuclear segmentation. However, through image-based
modeling, technical and tumor variations can be captured
for robust nuclear segmentation from whole slide images.
Subsequently, segmented nuclei and corresponding computed
morphometric representation enables characterization of tumor
histopathology. Our approach for nuclear segmentation ad-
dresses technical and biological variations by 1) utilizing global
information from a diverse set of annotated reference images,
2) normalizing the test image against the reference images in
the color space, and 3) incorporating local variations in the
test image. Segmentation is formulated within a graph cut
framework with geodesic constraint for improved accuracy
of the nuclear boundaries. The method has been validated
against annotated data and applied to a large dataset of GBM
tumor cohort to identify subtypes as a function of cellularity
and nuclear size. One of these subtypes is shown to have an
increase in survival as a result of a more aggressive therapy
with an underlying molecular signature that is consistent with
invasiveness and proliferation.
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