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Abstract. Integrative analysis based on quantitative representation of
whole slide images (WSIs) in a large histology cohort may provide predic-
tive models of clinical outcome. On one hand, the efficiency and effective-
ness of such representation is hindered as a result of large technical vari-
ations (e.g., fixation, staining) and biological heterogeneities (e.g., cell
type, cell state) that are always present in a large cohort. On the other
hand, perceptual interpretation/validation of important multi-variate
phenotypic signatures are often difficult due to the loss of visual infor-
mation during feature transformation in hyperspace. To address these
issues, we propose a novel approach for integrative analysis based on
cellular morphometric context, which is a robust representation of WSI,
with the emphasis on tumor architecture and tumor heterogeneity, built
upon cellular level morphometric features within the spatial pyramid
matching (SPM) framework. The proposed approach is applied to The
Cancer Genome Atlas (TCGA) lower grade glioma (LGG) cohort, where
experimental results (i) reveal several clinically relevant cellular morpho-
metric types, which enables both perceptual interpretation/validation
and further investigation through gene set enrichment analysis; and (ii)
indicate the significantly increased survival rates in one of the cellular
morphometric context subtypes derived from the cellular morphometric
context.
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1 Introduction

Histology sections provide wealth of information about the tissue architecture
that contains multiple cell types at different states of cell cycles. These sec-
tions are often stained with hematoxylin and eosin (H&E) stains, which label
DNA (e.g., nuclei) and protein contents, respectively, in various shades of color.
Morphometric abberations in tumor architecture often lead to disease progres-
sion, and it is desirable to quantify indices associated with these abberations
since they can be tested against the clinical outcome, e.g., survival, response to
therapy.

For the quantitative analysis of the H&E stained sections, several excellent
reviews can be found in [7,8]. Fundamentally, the trend has been based either on
nuclear segmentation and corresponding morphometric representation, or patch-
based representation of the histology sections that aids in clinical association.
The major challenge for tissue morphometric representation is the large amounts
of technical and biological variations in the data. To overcome this problem,
recent studies have focused on either fine tuning human engineered features [1,
4,11,12], or applying automatic feature learning [5,9,15,16,19,20], for robust
representation and characterization.

Even though there are inter- and intra- observer variations [6], a trained
pathologist always uses rich content (e.g., various cell types, cellular organiza-
tion, cell state and health), in context, to characterize tumor architecture and
heterogeneity for the assessment of disease state. Motivated by the works of
[13,18], we encode cellular morphometric signatures within the spatial pyramid
matching (SPM) framework for robust representation (i.e., cellular morphomet-
ric context) of WSIs in a large cohort with the emphasis on tumor architecture
and tumor heterogeneity, based on which an integrative analysis pipeline is con-
structed for the association of celllular morphometric context with clinical out-
comes and molecular data, with the potential in hypothesis generation regarding
the imaging biomarkers for personalized diagnosis or treatment. The proposed
approach is applied to the TCGA LGG cohort, where experimental results (i)
reveal several clinically relevant cellular morphometric types, which enables both
perceptual interpretation/validation and further investigation through gene set
enrichment analysis; and (ii) indicate the significantly increased survival rates
in one of the cellular morphometric context subtypes derived from the cellular
morphometric context.

2 Approaches

The proposed approach starts with the construction of cellular morphometric
types and cellular morphometric context, followed by integrative analysis with
both clinical and molecular data. Specifically, the nuclear segmentation method
in [4] was adopted given its demonstrated robustness in the presence of bio-
logical and technical variations, where the corresponding nuclear morphometric
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descriptors are described in [3], and the constructed cellular morphometric con-
text representations are released on our website1.

2.1 Construction of Cellular Morphometric Types and Cellular
Morphometric Context

For a set of WSIs and corresponding nuclear segmentation results, let M be the
total number of segmented nuclei; N be the number of morphometric descriptors
extracted from each segmented nucleus, e.g. nuclear size, and nuclear intensity;
and X be the set of morphometric descriptors for all segmented nuclei, where
X = [x1, ...,xM ]� ∈ R

M×N . The construction of cellular morphometric types
and cellular morphometric context are described as follows,

1. Construct cellular morphometric types (D), where D = [d1, ...,dK ]� are the
K cellular morphometric types to be learned by the following optimization:

min
D,Z

M∑

m=1

||xm − zmD||2 (1)

subject to card(zm) = 1, |zm| = 1, zm � 0,∀m

where Z = [z1, ..., zM ]� indicates the assignment of the cellular morphometric
type, card(zm) is a cardinality constraint enforcing only one nonzero element
of zm, zm � 0 is a non-negative constraint on the elements of zm, and |zm| is
the L1-norm of zm. During training, Eq. 1 is optimized with respect to both
Z and D; In the coding phase, for a new set of X, the learned D is applied,
and Eq. 1 is optimized with respect to Z only.

2. Construct cellular morphometric context vis SPM. This is done by repeat-
edly subdividing an image and computing the histograms of different cellular
morphometric types over the resulting subregions. As a result, the spatial his-
togram, H, is formed by concatenating the appropriately weighted histograms
of all cellular morphometric types at all resolutions. For more details about
SPM, please refer to [13].

In our experiment, K is fixed to be 64. Meanwhile, given the fact that each
patient may contain multiple WSIs, SPM is applied at a single scale for the
convenient construction of cellular morphometric context as well as the integra-
tive analysis at patient level, where both cellular morphometric types and the
subtypes of cellular morphometric context are associated with clinical outcomes,
and molecular information.

2.2 Integrative Analysis

The construction of cellular morphometric context at patient level in a large
cohort enables the integrative analysis with both clinical and molecular infor-
mation, which contains the components as follows,
1 http://bmihub.org/project/tcgalggcellularmorphcontext.

http://bmihub.org/project/tcgalggcellularmorphcontext
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1. Identification of cellular morphometric subtypes/clusters: consensus cluster-
ing [14] is performed for identifying subtypes/clusters across patients. The
input of consensus clustering are the cellular morphometric context at the
patient level. Consensus clustering aggregates consensus across multiple runs
for a base clustering algorithm. Moreover, it provides a visualization tool to
explore the number of clusters in the data, as well as assessing the stability
of the discovered clusters.

2. Survival analysis: Cox proportional hazards (PH) regression model is used for
survival analysis.

3. Enrichment analysis: Fisher’s exact test is used for the enrichment analysis
between cellular morphometric context subtypes and genomic subtypes.

4. Genomic association: linear models are used for assessing differential expres-
sion of genes between subtypes of cellular morphometric context, and the
correlation between genes and cellular morphometric types.

3 Experiments and Discussion

The proposed approach has been applied on the TCGA LGG cohort, including
215 WSIs from 209 patients, where the clinical annotation of 203 patients are
available. For the quality control purpose, background and border portions of
each whole slide image were detected and removed from the analysis.

3.1 Phenotypic Visualization and Integrative Analysis of Cellular
Morphometric Types

The TCGA LGG cohort consists of ∼ 80 million segmented nuclear regions, from
which 2 million were randomly selected for construction of cellular morphometric
types. As described in Sect. 2, the cellular morphometric context representation
for each patient is a 64-dimensional vector, where each dimension represents the
normalized frequency of a specific cellular morphometric type appearing in the
WSIs of the patient. Initial integrative analysis is performed by linking individ-
ual cellular morphometric types to clinical outcomes and molecular data. Each
cellular morphometric type is chosen as the predictor variable in the Cox pro-
portional hazards (PH) regression model together with the age of the patient
(implemented through the R survival package). For each cellular morphometric
type, the frequencies are further correlated with the gene expression values across
all patients. The top-ranked genes of positive correlation and negative correla-
tion, respectively, are imported into the MSigDB [17] for gene set enrichment
analysis. Table 1 summarizes cellular morphometric types that best predict the
survival distribution, and the corresponding enriched gene sets. Figure 1 shows
the top-ranked examples for these cellular morphemetric types.

As shown in Table 1, 8 out of 64 cellular morphometric types are clinically
relevant to survival (FDR adjusted p-value < 0.01) with statistical significance.
The first four cellular morphometric types in Fig. 1 all have a hazard ratio > 1,
indicating that a higher frequency of these cellular morphometric types may lead
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Table 1. Top cellular morphometric types for predicting the survival distribution
based on the Cox proportional hazards (PH) regression model, and the corresponding
enriched gene sets with respect to genes that best correlate the frequency of the cellu-
lar morphometric type appearing in the WSIs of the patient, positively or negatively.
Hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions with
a unit difference of an explanatory variable, and higher HR indicates higher hazard of
death.

Type p-value q-value Hazard Enriched gene sets

ratio

Worse prognosis

#5 7.25e−4 7.73e−3 3.47e4

#28 2.05e−5 4.37e−4 9.32e3 Negatively correlated with: genes up-regulated in response to

IFNG; genes up-regulated in response to alpha interferon

proteins

#39 8.57e−7 2.74e−5 5.07e3 Positively correlated with: genes encoding proteins involved in

oxidative phosphorylation; genes up-regulated during

unfolded protein response, a cellular stress response related

to the endoplasmic reticulum; genes involved in DNA repair

Negatively correlated with: genes involved in the G2/M

checkpoint, as in progression through the cell division cycle;

genes important for mitotic spindle assembly; genes

defining response to androgens; genes up-regulated by

activation of the PI3K/AKT/mTOR pathway

#43 1.57e−9 1.00e−7 9.40e3 Negatively correlated with: genes up-regulated by activation

of Notch signaling

Better prognosis

#29 3.01e−4 3.85e−3 1.74e−8 Positively correlated with: genes up-regulated by IL6 via

STAT3 ; genes defining inflammatory response; genes

up-regulated in response to IFNG; genes regulated by

NF-kB in response to TNF ; genes up-regulated in

response to TGFB1 ; genes up-regulated in response to

alpha interferon proteins; genes involved in DNA repair;

genes mediating programmed cell death (apoptosis) by

activation of caspases; genes up-regulated through

activation of mTORC1 complex; genes involved in p53

pathways and networks

#31 1.23e−4 1.96e−3 5.49e−12 Positively correlated with: genes encoding components of the

complement system, which is part of the innate immune

system; genes up-regulated by KRAS activation; genes

up-regulated by IL6 via STAT3

#46 1.17e−3 9.84e−3 1.07e−8 Positively correlated with: a subgroup of genes regulated by

MYC; genes defining response to androgens; genes involved

in DNA repair; genes encoding cell cycle related targets of

E2F transcription factors

#52 1.23e−3 9.84e−3 6.86e−11 Positively correlated with: genes up-regulated during

transplant rejection; genes up-regulated during formation of

blood vessels; genes up-regulated in response to IFNG;

genes regulated by NF-kB in response to TNF ; genes

up-regulated in response to TGFB1 ; genes up-regulated by

IL6 via STAT3 ; genes mediating programmed cell death

(apoptosis) by activation of caspases
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Fig. 1. Top-ranked examples for cellular morphometric types that best predict the
survival distribution, as shown in Table 1. Each example is an image patch of 101×101
pixels centered by the retrieved cell marked with the green dot. The first four cellular
morphometric types (hazard ratio> 1) indicate a worse prognosis and the last four
cellular morphometric types (hazard ratio< 1) indicates a protective effect. Note, this
figure is best viewed in color at 400 % zoom-in.

to a worse prognosis. A common phenotypic property of these cellular morpho-
metric types is the loss of chromatin content in the nuclear regions, which may
be associated with poor prognosis of lower grade glioma. The last four cellular
morphometric types in Fig. 1 all have a hazard ratio< 1, indicating that a higher
frequency of these cellular morphometric types may lead to a better prognosis.

Table 1 also indicates the enrichment of genes up-regulated in response
to IFNG in cellular morphometric types #28, #29 and #52. In the glioma
microenvironment, tumor cells and local T cells produce abnormally low lev-
els of IFNG. IFNG acts on cell-surface receptors, and activates transcription
of genes that offer potentials in the treatment of brain tumors by increas-
ing tumor immunogenicity, disrupting proliferative mechanisms, and inhibiting
tumor angiogenesis [10]. The observations of IFNG as a positive survival factor
confirms the prognostic effect of these cellular morphometric types: #28 – neg-
ative correlation and worse prognosis; #29 and #52 – positive correlation and
better prognosis. Other interesting observations include that three cellular mor-
phometric types of better prognosis are enriched with genes up-regulated by IL6
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via STAT3, and two cellular morphometric types of better prognosis are enriched
with genes regulated by NF-kB in response to TNF and genes up-regulated in
response to TGFB1, respectively.

3.2 Subtyping and Integrative Analysis of Cellular Morphometric
Context

Hierarchical clustering was adopted as the clustering algorithm for consen-
sus clustering, which is implemented via R Bioconductor ConsensusClusterPlus
package with χ2 distance as the distance function. The procedure was run for
500 iterations with a sampling rate of 0.8 on 203 patients, and the corresponding
consensus clustering matrices with 2 to 9 clusters are shown in Fig. 2, where the
matrices with 2 to 5 clusters reveal different levels of similarity among patients
and matrices with 6 to 9 clusters provide little further information. Thus, we use
the five-cluster result for integrative analysis with clinical outcomes and genomic
signatures, where, due to insufficient patients in subtypes #1 (1 patient) and #2
(2 patients), we focus on the remaining three subtypes.
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Fig. 2. Consensus clustering matrices and corresponding consensus CDFs of 203 TCGA
patients with LGG for cluster number of N = 2 to N = 9 based on cellular morpho-
metric context.

Figure 3(a) shows the Kaplan-Meier survival plot for three major subtypes of
the five-cluster consensus clustering result. The log-rank test p-value of 2.82e−5

indicates that the difference between survival times of subtype #5 patients and
subtypes #3&#4 patients is statistically significant. The integration of genome-
wide data from multiple platforms uncovered three molecular classes of lower-
grade gliomas that were best represented by IDH and 1p/19q status: wild-type
IDH, IDH mutation with 1p/19q codeletion, and IDH mutation without 1p/19q
codeletion [2]. Further Fisher’s exact test reveals no enrichment between the
cellular morphometric subtypes and these molecular subtypes. On the other
hand, differential expressed genes between subtype #5 and subtypes #3&#4
(Fig. 3(b)), indicate enrichment of genes that mediate programmed cell death
(apoptosis) by activation of caspases, and genes defining epithelial-mesenchymal
transition, as in wound healing, fibrosis and metastasis (via MSigDB).
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Fig. 3. (a) Kaplan-Meier plot for three major subtypes associated with patient survival,
where subtypes #3 (53 patients) #4 (65 patients) and #5 (82 patients) correspond to
the three major subtypes from top-left to bottom-right, respectively, in Fig. 2 (N = 5).
(b) Top genes that are differently expressed between the subtype #5 and subtypes
#3&#4.

4 Conclusion and Future Work

In this paper, we encode cellular morphometric signatures within the SPM frame-
work for robust representation (i.e., cellular morphometric context) of WSIs in
a large cohort at patient level, based on which an integrative analysis pipeline
is constructed for the association of celllular morphometric context with clini-
cal outcomes and molecular data. The integrative analysis, performed on TCGA
LGG cohort, reveals clinically relevant cellular morphometric types and morpho-
metric context subtypes, and the corresponding enriched gene sets. We believe
that the proposed approach has the potential to contribute to hypothesis gener-
ation regarding the imaging biomarkers for personalized diagnosis or treatment,
which will be further validated on independent cohort.
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