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a b s t r a c t 

Classification of histology sections in large cohorts, in terms of distinct regions of microanatomy (e.g., 

stromal) and histopathology (e.g., tumor, necrosis), enables the quantification of tumor composition, and 

the construction of predictive models of genomics and clinical outcome. To tackle the large technical vari- 

ations and biological heterogeneities, which are intrinsic in large cohorts, emerging systems utilize either 

prior knowledge from pathologists or unsupervised feature learning for invariant representation of the 

underlying properties in the data. However, to a large degree, the architecture for tissue histology classi- 

fication remains unexplored and requires urgent systematical investigation. This paper is the first attempt 

to provide insights into three fundamental questions in tissue histology classification: I. Is unsupervised 

feature learning preferable to human engineered features? II. Does cellular saliency help? III. Does the 

sparse feature encoder contribute to recognition? We show that (a) in I, both Cellular Morphometric Fea- 

ture and features from unsupervised feature learning lead to superior performance when compared to 

SIFT and [Color, Texture]; (b) in II, cellular saliency incorporation impairs the performance for systems 

built upon pixel-/patch-level features; and (c) in III, the effect of the sparse feature encoder is correlated 

with the robustness of features, and the performance can be consistently improved by the multi-stage ex- 

tension of systems built upon both Cellular Morphmetric Feature and features from unsupervised feature 

learning. These insights are validated with two cohorts of Glioblastoma Multiforme (GBM) and Kidney 

Clear Cell Carcinoma (KIRC). 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Although molecular characterization of tumors through gene

expression analysis has become a standardized technique, bulk tu-

mor gene expression data provide only an average genome-wide

measurement for a biopsy and fail to reveal inherent cellular com-

position and heterogeneity of a tumor. On the other hand, histol-

ogy sections provide wealth of information about the tissue archi-

tecture that contains multiple cell types at different states of cell

cycles. These sections are often stained with hematoxylin and eosin

(H&E) stains, which label DNA (e.g., nuclei) and protein contents,

respectively, in various shades of color. Furthermore, morphomet-

ric abberations in tumor architecture often lead to disease progres-
� Related resources have been released for public consumption at 

http://bmihub.org . 
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ion, and it is therefore desirable to quantify tumor architecture as

ell as the corresponding morphometric abberations in large co-

orts for the construction of predictive models of end points, e.g.,

linical outcome, which have the potential for improved diagnosis

nd therapy. 

Despite the effort s by some researchers on reducing inter- and

ntra-pathologist variations ( Dalton et al., 20 0 0 ) during manual

nalysis, this approach is not a scalable solution, and therefore im-

edes the effective representation and recognition from large co-

orts for scientific discoveries. With its value resting on captur-

ng detailed morphometric signatures and organization, automatic

uantitative analysis of a large collection of histological data is

ighly desirable, and is unfortunately impaired by a number of

arriers mostly originating from the technical variations (e.g., fix-

tion, staining) and biological heterogeneities (e.g., cell type, cell

tate) always presented in the data. Specifically, a histological tis-

ue section refers to an image of a thin slice of tissue applied to

 microscopic slide and scanned from a light microscope, and the

http://dx.doi.org/10.1016/j.media.2016.08.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.08.010&domain=pdf
http://bmihub.org
mailto:hchang@lbl.gov
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echnical variations and biological heterogeneities lead to signifi-

ant color variations both within and across tissue sections. For ex-

mple, within the same tissue section, nuclear signal (color) varies

rom light blue to dark blue due to the variations of their chro-

atin content; and nuclear intensity in one tissue section may be

ery close to the background intensity (e.g., cytoplasmic, macro-

olecular components) in another tissue section. 

It is also worth to mention that alternative staining (e.g., flu-

rescence) and microscopy methods (multi-spectral imaging) have

een proposed and studied in order to overcome the fundamental

imitations/challenges in tissue histology ( Stack et al., 2014; Leven-

on et al., 2015; Rimm, 2014; Huang et al., 2013; Ghaznavi et al.,

013 ); however, H&E stained tissue sections are still the gold stan-

ard for the assessment of tissue neoplasm. Furthermore, the effi-

ient and effective representation and interpretation of H&E tissue

istology sections in large cohorts (e.g., The Cancer Genome At-

as dataset) have the potential to provide predictive models of ge-

omics and clinical outcome, and are therefore urgently required. 

Although many techniques have been designed and developed

or tissue histology classification (see Section 2 ), the architec-

ure for tissue histology classification remains largely unexplored

nd requires urgent systematical investigation. To fulfil this goal,

ur paper provides insights to three fundamental questions in

issue histology classification: I. Is unsupervised feature learning

referable to human engineered features? II. Does cellular prior

nowledge help? III. Does the sparse feature encoder contribute

o recognition? The novelty of our work resides in three folds:

i) architecture design: we have systematically experimented the

ystem architecture with various combinations of feature types,

eature extraction strategies and intermediate layers based on

parsity/locality-constrained feature encoders, which ensures the

xtensive evaluation and detailed insights on impact of the key

omponents during the architecture construction; (ii) experimental

esign: our experimental evaluation has been performed through

ross-validation on two independent datasets with distinct tumor

ypes, where both datasets have been curated by our patholo-

ist to provide examples of distinct regions of microanatomy (e.g.,

tromal) and histopathology (e.g., tumor, necrosis) with sufficient

mount of technical variations and biological heterogeneities, so

hat the architecture can be faithfully tested and validated against

mportant topics in histopathology (see Section 4 for details). More

mportantly, such an experimental design (combination of cross-

alidation and validation on independent datasests), to the maxi-

um extent, ensures the consistency and unbiasedness of our find-

ngs; and (iii) outcome: the major outcome of our work are well-

ustified insights in the architecture design/construction. Specifi-

ally, we suggest that the sparse feature encoders based on Cellu-

ar Morphometric Feature and features from unsupervised feature

earning provide the best configurations for tissue histology classi-

cation. Furthermore, these insights also led to the construction of

 highly scalable and effective system (CMF- PredictiveSFE -KSPM,

ee Section 4 for details) for tissue histology classification. Finally,

e believe that our work will not only benefit the research in com-

utational histopathology, but will also benefit the community of

edical image analysis at large by shedding lights on the system-

tical study of other important topics. 

Organization of this paper is as follows: Section 2 reviews re-

ated works. Section 3 describes various components for the sys-

em architecture during evaluation. Section 4 elaborates the details

f our experimental setup, followed by a detailed discussion on the

xperimental results. Lastly, Section 5 concludes the paper. 

. Related work 

Current work on histology section analysis is typically foru-

ulated and performed at multiple scales for various end points,
nd several outstanding reviews can be found in Demir and Yener

20 09) ; Gurcan et al. (20 09) . From our perspective, the trends

re: (i) nuclear segmentation and organization for tumor grad-

ng and/or the prediction of tumor recurrence ( Basavanhally et al.,

009; Doyle et al., 2011 ). (ii) patch level analysis (e.g., small re-

ions) ( Bhagavatula et al., 2010; Kong et al., 2010 ), using color and

exture features, for tumor representation. and (iii) detection and

epresentation of the auto-immune response as a prognostic tool

or cancer ( Fatakdawala et al., 2010 ). 

While our focus is on the classification of histology sections in

arge cohorts, in terms of distinct regions of microanatomy (e.g.,

tromal) and histopathology (e.g., tumor, necrosis), the major chal-

enge resides in the large amounts of technical variations and bi-

logical heterogeneities in the data ( Kothari et al., 2012 ), which

ypically leads to techniques that are tumor type specific or even

aboratory specific. The major effort s addressing this issue fall into

wo distinct categories: (i) fine-tuning human engineered features

 Bhagavatula et al., 2010; Kong et al., 2010; Kothari et al., 2012;

hang et al., 2013a ); and (ii) applying automatic feature learning

 Huang et al., 2011; Chang et al., 2013c ) for robust representa-

ion. Specifically, the authors in Bhagavatula et al. (2010) designed

ulti-scale image features to mimic the visual cues that experts

tilized for the automatic identification and delineation of germ-

ayer components in H&E stained tissue histology sections of ter-

tomas derived from human and nonhuman primate embryonic

tem cells; the authors in Kong et al. (2010) integrated multiple

exture features (e.g., wavelet features) into a texture-based con-

ent retrieval framework for the identification of tissue regions that

nform diagnosis; the work in Kothari et al. (2012) utilized vari-

us features (e.g., color, texture and shape) for the study of vi-

ual morphometric patterns across tissue histology sections; and

he work in Chang et al. (2013a ) constructed the cellular morpho-

etric context based on various cellular morphometric features

or effective representation and classification of distinct regions of

icroanatomy and histopathology. Although many successful sys-

ems have been designed and developed, based on human engi-

eered features, for various tasks in computational histopathology,

he generality/applicability of such systems to different tasks or

o different cohorts can sometimes be limited, as a result, sys-

ems based on unsupervised feature learning have been built with

emonstrated advantages especially for the study of large cohorts,

mong which, both the authors in Huang et al. (2011) and Chang

t al. (2013c ) utilized sparse coding techniques for unsupervised

haractorization of tissue morphometric patterns. 

Furthermore, tissue histology classification can be considered

s a specific application of image categorization in the context of

omputer vision research, where spatial pyramid matching(SPM)

 Lazebnik et al., 2006 ) has clearly become the major component of

he state-of-art systems ( Everingham et al., 2012 ) for its effective-

ess in practice. Meanwhile, sparsity/locality-constrained feature 

ncoders, through dictionary learning, have also been widely stud-

ed, and the improvement in classification performance has been

onfirmed in various applications ( Yang et al., 2009; Wang et al.,

010; Chang et al., 2013a ). 

The evolution of our research on the classification of histol-

gy sections contains several stages: (i) kernel-based classifica-

ion built-upon human engineered feature (e.g., SIFT features) ( Han

t al., 2011 ); (ii) independent subspace analysis for unsupervised

iscovery of morphometric signatures without the constraint of

eing able to reconstruct the original signal ( Le et al., 2012 ); (iii)

ingle layer predictive sparse decomposition for unsupervised dis-

overy of morphometric signatures with the constraint of being

ble to reconstruct the original signal ( Nayak et al., 2013 ); (iv)

ombination of either prior knowledge ( Chang et al., 2013a ) or

redictive sparse decomposition ( Chang et al., 2013c ) with spatial

yramid matching; and (v) more recently, stacking multiple pre-
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Table 1 

Annotation of abbreviations in the paper, where FE stands for feature extraction; SFE stands for sparse 

feature encoding; and SPM stands for spatial pyramid matching. Here, we also provide the dimension 

information about (i) original features (outcome of FE); (ii) sparse codes (outcome of SFE); (iii) final rep- 

resentation (outcome of final spatial pooling, i.e., SPM); and (iv) final prediction (outcome of architectures 

as a one-dimensional class label.). 

Category Abbreviation Description Dimension 

FE CMF Cellular Morphometric Feature 15 

DSIFT Dense SIFT 128 

SSIFT Salient SIFT 128 

DCT Dense [Color,Texture] 203 

SCT Salient [Color,Texture] 203 

DPSD Dense PSD 1024 

SPSD Salient PSD 1024 

SFE SC Sparse Coding 1024 

GSC Graph Regularized Sparse Coding 1024 

LLC Locality-Constraint Linear Coding 1024 

LCDL Locality-Constraint Dictionary Learning 1024 

SPM KSPM Kernal SPM (256, 512, 1024) 

LSPM Linear SPM (256, 512, 1024) 

Architecture FE-KSPM Architectures without the sparse feature encoder 1 

FE-SFE-LSPM Architectures with the sparse feature encoder 1 

Table 2 

Annotation of important terms used in this paper. 

Term Description 

Human Engineered Features Refers to features that are pre-determined by human experts, 

with manually fixed filters/kernels/templates during extraction. 

Cellular Prior Knowledge Refers to the morphometric information, in terms of shape, intensity, etc., 

that are extracted from each individual cell/nucleus 

Cellular Saliency Refers to perceptually salient regions 

corresponding to cells/nulei in tissue histology sections. 

Multi-Stage System Specifically refers to the architectures with multiple 

stacked feature extraction/abstratcion layers. 

Single-Stage System Specifically refers to the architectures with a single 

feature extraction layer. 
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dictive sparse coding modules into deep hierarchy ( Chang et al.,

2013d ). And this paper builds on our longstanding expertise and

experiences to provide (i) extensive evaluation on the model archi-

tecture for the classification of histology sections; and (ii) insights

on several fundamental questions for the classification of histology

sections, which, hopefully, will shed lights on the analysis of his-

tology sections in large cohorts towards the ultimate goal of im-

proved therapy and treatment. 

3. Model architecture 

To ensure the extensive evaluation and detailed insights on im-

pact of the key components during the architecture construction,

we have systematically experimented the model architecture with

various combinations of feature types, feature extraction strategies

and intermediate layers based on sparsity/locality-constrained fea-

ture encoders. And this section describes how we built the tissue

classification architecture for evaluation. Tables 1 and 2 summarize

the aberrations and important terms, respectively, and detailed de-

scriptions are listed in the sections as follows, 

3.1. Feature extraction modules (FE) 

The major barrier in tissue histology classification, in large co-

horts, stems from the large technical variations and biological het-

erogeneities, which requires the feature representation to capture

the intrinsic properties in the data. In this work, we have evaluated

three different features from two different categories (i.e., human-

engineered feature and unsupervised feature learning). Details are

as follows, 
Cellular Morphometric Feature - CMF: The cellular mor-

hometric features are human-engineered biological meaningful

ellular-level features, which are extracted based on segmented

uclear regions over the input image. It has been recently shown

hat tissue classification systems based on CMF are insensitive to

egmentation strategies ( Chang et al., 2013a ). In this work, we em-

loy the segmentation strategy proposed in Chang et al. (2013b ),

nd simply use the same set of features as described in Table 3 .

t is worth to mention that although generic cellular features, e.g.,

ernike monments ( Apostolopoulos et al., 2011; Asadi et al., 2006 ),

ave been successfully applied in various biomedical applications,

e choose to use CMF due to (i) its demonstrated power in tissue

istology classification ( Chang et al., 2013a ); and (ii) the limited

mpact by including those generic cellular features on both evalu-

tion and understanding of the benefits introduced by the sparse

eature encoders. 

Dense SIFT - DSIFT: The dense SIFT features are human-

ngineered features, which are extracted from regularly-spaced

atches over the input image, with the fixed patch-size (16 × 16

ixels) and step-size (8 pixels). 

Salient SIFT - SSIFT: The salient SIFT features are human-

ngineered features, which are extracted from patches centered at

egmented nuclear centers ( Chang et al., 2013b ) over the input im-

ge, with a fixed patch-size (16 × 16 pixels). 

Dense [Color,Texture] - DCT: The dense [Color,Texture] fea-

ures are human engineered features, and formed as a concate-

ation of texture and mean color with the fixed patch-size (20

20 pixels) and step-size (20 pixels), where color features are

xtracted in the RGB color space, and texture features (in terms

f mean and variation of filter responses) are extracted via steer-
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Table 3 

Cellular morphometric features, where the curvature values were computed with σ = 2 . 0 , and the nuclear back- 

ground region is defined to be the region outside the nuclear region, but inside the bounding box of nuclear 

boundary. 

Feature Description 

Nuclear Size #pixels of a segmented nucleus 

Nuclear Voronoi Size #pixels of the voronoi region, where the segmented nucleus resides 

Aspect Ratio Aspect ratio of the segmented nucleus 

Major Axis Length of Major axis of the segmented nucleus 

Minor Axis Length of Minor axis of the segmented nucleus 

Rotation Angle between major axis and x axis of the segmented nucleus 

Bending Energy Mean squared curvature values along nuclear contour 

STD Curvature Standard deviation of absolute curvature values along nuclear contour 

Abs Max Curvature Maximum absolute curvature values along nuclear contour 

Mean Nuclear Intensity Mean intensity in nuclear region measured in gray scale 

STD Nuclear Intensity Standard deviation of intensity in nuclear region measured in gray scale 

Mean Background Intensity Mean intensity of nuclear background measured in gray scale 

STD Background Intensity Standard deviation of intensity of nuclear background measured in gray scale 

Mean Nuclear Gradient Mean gradient within nuclear region measured in gray scale 

STD Nuclear Gradient Standard deviation of gradient within nuclear region measured in gray scale 

Table 4 

Properties of various features in evaluation. Note, all human-engineered features are pre-determined and dataset indepen- 

dent; while features from unsupervised feature learning are task/dataset-dependent, and are able to capture task/dataset- 

specific information, such as potentially meaningful morphometric patterns in tissue histology. 

FE Design Target Biological Information 

CMF Human-Engineered Cell (dataset independent) Cellular morphometric information 

SIFT Human-Engineered Generic (dataset independent) NA 

CT Human-Engineered Color and texture patterns (dataset independent) NA 

PSD Learned Generic (dataset dependent) Dataset dependent 
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ble filters ( Young and Lesperance, 2001 ) with 8 directions ( θ ∈
 0 , π8 , 

π
4 , 

3 π
8 , 

1 π
2 , 

5 π
8 , 

3 π
4 , 

7 π
8 } ) and 5 scales ( σ ∈ {1, 2, 3, 4, 5}) on

he grayscale image. 

Salient [Color,Texture] - SCT: The salient [Color,Texture] fea-

ures are human-engineered features, which are extracted on

atches centered at segmented nuclear centers ( Chang et al.,

013b ) over the input image, with a fixed patch-size (20 × 20 pix-

ls). 

Dense PSD - DPSD: The unsupervised features are learned by

redictive sparse decomposition (PSD) on randomly sampled im-

ge patches following the protocol in Chang et al. (2013c ), and

he dense PSD features are extracted from regularly-spaced patches

ver the input image, with the fixed patch-size (20 × 20 pixels),

tep-size (20 pixels) and number of basis functions (1024). Briefly,

iven X = [ x 1 , . . . , x N ] ∈ R 

m ×N as a set of vectorized image patches,

e formulated the PSD optimization problem as: 

min 

 , Z , W 

‖ X − BZ ‖ 

2 
F + λ‖ Z ‖ 1 + ‖ Z − WX ‖ 

2 
F 

.t. ‖ b i ‖ 

2 
2 = 1 , ∀ i = 1 , . . . , h (1) 

here B = [ b 1 , . . . , b h ] ∈ R 

m ×h is a set of the basis functions; Z =
 z 1 , . . . , z N ] ∈ R 

h ×N is the sparse feature matrix; W ∈ R 

h ×m is the

uto-encoder; λ is thee regularization constant. The goal of jointly

inimizing Eq. (1) with respect to the triple < B, Z, W > is to

nforce the inference of the regressor WX to be resemble to the

ptimal sparse codes Z that can reconstruct X over B ( Kavukcuoglu

t al., 2008 ). In our implementation, the number of basis functions

 B ) is fixed to be 1024, λ was fixed to be 0.3, empirically, for the

est performance. 

Salient PSD - SPSD: The salient PSD features are extracted

n patches centered at segmented nuclear centers ( Chang et al.,

013b ) over the input image, with the fixed patch-size (20 × 20

ixels) and fixed number of basis functions (1024). 

The properties of aforementioned features are summarized in

able 4 . Note that salient features are not included, given the fact

hat they only differ from their corresponding dense versions with
xtra saliency information. It is clear that, different from SIFT and

T, which are generic features designed for general purposes, both

MF and PSD can encode biological meaningful information, where

he former works in a pre-determined manner while the latter has

he potential to capture biological meaningful patterns in an unsu-

ervised fashion. Therefore, within the context of tissue histology

lassification, CMF and PSD have the potential to work better due

o these intrinsic properties, as shown in our evaluation. 

.2. Sparse feature encoding modules (SFE) 

It has been shown recently ( Yang et al., 2009; Wang et al.,

010 ) that the impose of the feature encoder through dictionary

earning, with sparsity or locality constraint, significantly improves

he efficacy of existing image classification systems. The rationale

s that the sparse feature encoder functions as an additional feature

xtraction/abstraction operation, and thus adds an extra layer (stage)

o the feature extraction component of the system. Therefore, it ex-

ends the original system with multiple feature extraction/abstraction

tages, which is able to capture intrinsic patterns at the higher-

evel, as suggested in Jarrett et al. (2009) . To study the impact of

he sparse feature encoder on tissue histology classification, we

dopt three different sparsity/locality-constrained feature encoders 

or evaluation. Briefly, let Y = [ y 1 , . . . , y M 

] ∈ R 

a ×M be a set of fea-

ures, C = [ c 1 , . . . , c M 

] ∈ R 

b×M be the set of sparse codes, and B =
 b 1 , . . . , b b ] ∈ R 

a ×b be a set of basis functions for feature encoding,

he feature encoders are summarized as follows, 

Sparse Coding - (SC): 

in 

B , C 

M ∑ 

i =1 

|| y i − Bc i || 2 + λ|| c i || 1 ; s.t. || b i || ≤ 1 , ∀ i (2)

here || b i || is a unit � 2 -norm constraint for avoiding trivial solu-

ions, and || c i || 1 is the � 1 -norm enforcing the sparsity of c i . In our

mplementation, the number of basis functions ( B ) is fixed to be

024, λ is fixed to be 0.15, empirically, for the best performance. 
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Graph Regularized Sparse Coding - (GSC) ( Zheng et al., 2011 ) 

min 

B , C 

M ∑ 

i =1 

|| y i − Bc i || 2 + λ|| c i || 1 + αTr ( CLC 

T ) ; s.t. || b i || ≤ 1 , ∀ i 

(3)

where || b i || is a unit � 2 -norm constraint for avoiding trivial solu-

tions, and || c i || 1 is the � 1 -norm enforcing the sparsity of c i , Tr ( ·) is
the trace of matrix ·, L is the Laplacian matrix, and the third term

encodes the Laplacian regularizer ( Belkin and Niyogi, 2003 ). Please

refer to Zheng et al. (2011) for details of the formulation. In our

implementation, the number of basis functions ( B ) is fixed to be

1024, the regularization parameters, λ and α are fixed to be 1 and

5, respectively, for the best performance. 

Locality-Constraint Linear Coding - (LLC) ( Wang et al., 2010 ) :

min 

B , C 

M ∑ 

i =1 

|| y i − Bc i || 2 + λ|| d i � c i || 1 ; s.t. 1 

� c i = 1 , ∀ i (4)

where � denotes the element-wise multiplication, and d i ∈ R 

b en-

codes the similarity of each basis vector to the input descriptor y i ,

Specifically, 

d i = exp 

(dist (y i , B ) 

σ

)
(5)

where dist (y i , B ) = [ dist (y i , b 1 ) , . . . , dist (y i , b b )] , dist( y i , b j ) is the

Euclidean distance between y i and b j , σ is used to control the

weight decay speed for the locality adaptor. In our implementa-

tion, the number of basis functions ( B ) is fixed to be 1024, the

regularization parameters λ and σ are fixed to be 500 and 100,

respectively, to achieve the best performance. 

Locality-Constraint Dictionary Learning - (LCDL) ( Zhou and

Barner, 2013 ) : The LCDL optimization problem is formulated as: 

min 

B , C 
‖ 

Y − BC ‖ 

2 
F + λ

N ∑ 

i =1 

K ∑ 

j=1 

[ 
c 2 ji 

∥∥y i − b j 

∥∥2 

2 

] 
+ μ‖ 

C ‖ 

2 
F 

s.t. 

{
1 

T c i = 1 ∀ i (∗) 
c ji = 0 if b j / ∈ �τ (y i ) ∀ i, j (∗∗) (6)

where �τ ( y i ) is defined as the τ -neighborhood containing τ near-

est neighbors of y i , and λ, μ are positive regularization constants.

μ‖ C ‖ 2 F is included for numerical stability of the least–squares so-

lution. The sum-to-one constraint ( ∗) follows from the symmetry

requirement, while the locality constraint ( ∗∗) ensures that y i is

reconstructed by atoms belonging to its τ -neighborhood, allowing

c i to characterize the intrinsic local geometry. In our implemen-

tation, the number of basis functions ( B ) is fixed to be 1024, the

regularization parameters λ and μ are fixed to be 0.3 and 0.001,

respectively, and the neighborhood size τ is fixed to be 5, empiri-

cally, to achieve the best performance. 

The major differences of aforementioned sparse feature en-

coders reside in two folds: 

1. Objective: 

(a) SC: Learning sets of over-complete bases for efficient data

representation, originally applied to modeling the human vi-

sual cortex; 

(b) GSC : learning the sparse representations that explicitly take

into account the local manifold structure of the data; 

(c) LLC: generating descriptors for image classification by using

efficient locality-enforcing term; 

(d) LCDL learning a set of landmark points to preserve the local

geometry of the nonlinear manifold; 

2. Locality Enforcing Strategy: 

(a) SC: None; 
(b) GSC: using graph Laplacian to enforce the smoothness of

sparse representations along the geodesics of the data man-

ifold; 

(c) LLC: using a locality adaptor which penalizes far-way sam-

ples with larger weights. During optimization, the basis

functions are normalized after each iteration, which could

cause the learned basis functions deviate from the original

manifold and therefore lose locality-preservation property; 

(d) LCDL deriving an upper-bound for reconstructing an intrin-

sic nonlinear manifold without imposing any constraint of

the energy of basis functions; 

t is clear that SC is the most general approach for data represen-

ation purpose. Although various locality-constrained sparse cod-

ng techniques have demonstrated success in many applications

 Zheng et al., 2011; Wang et al., 2010; Zhou and Barner, 2013 ), their

istance metric in Euclidean Space has imposed implicit hypothe-

is on the manifold of the target feature space, which might po-

entially impair the performance, as reflected in our evaluation. 

.3. Spatial pyramid matching modules (SPM) 

As an extension of the traditional Bag of Features (BoF) model,

PM has become a major component of state-of-art systems for

mage classification and object recognition ( Everingham et al.,

012 ). Specifically, SPM consists of two steps: (i) vector quanti-

ation for the construction of dictionary from input; and (ii) his-

ogram (i.e., histogram of dictionary elements derived in previ-

us step) concatenation from image subregions for spatial pool-

ng. Most recently, the effectiveness of SPM for the task of tissue

istology classification has also been demonstrated in Chang et al.

2013a ); 2013c ). Therefore, we include two variations of SPM as

 component of the architecture for tissue histology classification,

hich are described as follows, 

Kernel SPM (KSPM Lazebnik et al., 2006 ): The nonlinear ker-

el SPM that uses spatial-pyramid histograms of features. In our

mplementation, we fix the level of pyramid to be 3. 

Linear SPM (LSPM Yang et al., 2009 ): The linear SPM that uses

he linear kernel on spatial-pyramid pooling of sparse codes. In our

mplementation, we fix the level of pyramid to be 3, and choose

he max pooling function on the absolute sparse codes, as sug-

ested in Yang et al. (2009) ; Chang et al. (2013a ). 

The choice of spatial pyramid matching module is made to op-

imize the performance/efficiency of the entire classification archi-

ecture. Experimentally, we find that (i) FE-KSPM outperforms FE-

SPM ; and (ii) FE-SFE-LSPM and FE-SFE-KSPM have similar per-

ormance, while the former is more computationally efficient than

he latter. Therefore, we adopt FE-SFE-LSPM and FE-KSPM during

he evaluation. 

As suggested in Jarrett et al. (2009) , the vector quantization

omponent of SPM can be seen as an extreme case of sparse cod-

ng, and the local histogram construction/concatenation compo-

ent of SPM can be considered as a special form of spatial pool-

ng. As a result, SPM is conceptually similar to the combination of

parse coding with spatial pooling, and therefore is able to serve

s an extra layer (stage) for feature extraction. Consequently, FE-

SPM can be considered as a single-stage system, and FE-SFE-

SPM can be considered as a multi-stage system with two feature

xtraction/abstraction layers. 

.4. Classification 

For architecture: FE-SFE-LSPM , we employed the linear SVM for

lassification, the same as in Wang et al. (2010) ; Yang et al. (2009) .

or architecture: FE-KSPM , the homogeneous kernel map ( Vedaldi

nd Zisserman, 2012 ) was first applied, followed by linear SVM for

lassification. 
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Fig. 1. GBM Examples. First column: Tumor; Second column: Transition to necrosis; Third column: Necrosis. Note that the phenotypic heterogeneity is highly diverse in each 

column. 
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. Experimental evaluation of model architecture 

.1. Experimental setup 

Our extensive evaluation is performed based on the cross-

alidation strategy with 10 iterations, where both training and test-

ng images are randomly selected per iteration, and the final re-

ults are reported as the mean and standard error of the cor-

ect classification rates with various dictionary sizes (256,512,1024)

n the following two distinct datasets, curated from (i) Glioblas-

oma Multiforme (GBM) and (ii) Kidney Renal Clear Cell Carcinoma

KIRC) from The Cancer Genome Atlas (TCGA), which are publicly

vailable from the NIH (National Institute of Health) repository.

he curation is performed by our pathologist in order to provide

xamples of distinct regions of microanatomy (e.g., stromal) and

istopathology (e.g., tumor, necrosis) with sufficient amount of bi-

logical heterogeneities and technical variations, so that the clas-

ification model architecture can be faithfully tested and validated

gainst important studies. Furthermore, the combination of exten-

ive cross-validation and independent validation on datasets with

istinct tumor types, to the maximum extent, ensures the consis-

ency and unbiasedness of our findings. The detailed description

f our datasets as well as the corresponding task forumulation are

escribed as follows, 

GBM Dataset: In brain tumors, necrosis, proliferation of vas-

ulature, and infiltration of lymphocytes are important prognos-

ic factors. And, some of these analyses, such as the quantifica-

ion of necrosis, have to be defined and performed as classifica-
ion tasks in histology sections. Furthermore, necrosis is a dynamic

rocess and different stages of necrosis exist (e.g., from cells ini-

iating a necrosis process to complete loss of chromatin content).

herefore, the capability of identification/classification of these end

oints, e.g., necrosis-related regions, in brain tumor histology sec-

ions, is highly demanded. In this study, we aim to validate the

odel architecture for the three-category classification (i.e., Tumor,

ecrosis, and Transition to Necrosis) on the GBM dataset, where

he images are curated from the whole slide images (WSI) scanned

ith a 20 X objective (0.502 micron/pixel). Representative exam-

les of each class can be found in Fig. 1 , which reveal a significant

mount of intra-class phenotypic heterogeneity. Such a highly het-

rogenous dataset provides an ideal test case for the quantitative

valuation of the composition of model architecture and its im-

act, in terms of performance and robustness, on the classification

f histology sections. Specifically, the number of images per cate-

ory are 628, 428 and 324, respectively, and most images are 10 0 0

10 0 0 pixels. For this task, we train, with various model archi-

ectures, on 160 images per category and tested on the rest, with

hree different dictionary sizes: 256, 512 and 1024. 

KIRC Dataset: Recent studies on quantitative histology analy-

is ( Lan et al., 2015; Rogojanu et al., 2015; Huijbers et al., 2013;

e Kruijf et al., 2011 ) reveal that the tumor-stroma ratio is a prog-

ostic factor in many different tumor types, and it is therefore in-

eresting and desirable to know how such an index plays its role

n KIRC, which can be fulfilled with two steps as follows, (i) iden-

ification/classification of tumor/stromal regions in tissue histology

ections for the construction of tumor-stroma ratio; and (ii) correl-
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Fig. 2. KIRC examples. First column: Tumor; Second column: Normal; Third column: Stromal. Note that (a) in the first column, there are two different types of tumor 

corresponding to clear cell carcinoma, with the loss of cytoplasm (first row), and granular tumor (second row), respectively; and (b) in the second column, staining protocol 

is highly varied. The cohort contains a significant amount of tumor heterogeneity that is coupled with technical variation. 
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ative analysis of the derived tumor-stroma ratio with clinical out-

come. Therefore, in this study, we aim to validate the model ar-

chitecture for the three-category classification (i.e., Tumor, Normal,

and Stromal) on the KIRC dataset, where the images are curated

from the whole slide images (WSI) scanned with a 40 X objective

(0.252 micron/pixel). Representative examples of each class can be

found in Fig. 2 , which (i) contain two different types of tumor cor-

responding to clear cell carcinoma, with the loss of cytoplasm (first

row), and granular tumor (second row), respectively; and (ii) reveal

large technical variations (i.e., in terms of staining protocol), espe-

cially in the normal category. The combination of the large amount

of biological heterogeneity and technical variations in this curated

dataset provides an ideal test case for the quantitative evaluation

of the composition of model architecture and its impact, in terms

of performance and robustness, on the classification of histology

sections. Specifically, the number of images per category are 568,

796 and 784, respectively, and most images are 10 0 0 × 10 0 0 pix-

els. For this task, we train, with various model architectures, on

280 images per category and tested on the rest, with three differ-

ent dictionary sizes: 256, 512 and 1024. 

4.2. Is unsupervised feature learning preferable to human engineered 

features? 

Feature extraction is the very first step for the construction of

classification/recogonition system, and is one of the most impor-

tant factors that affect the performance. To answer this question,

we evaluated four well-selected features based on two vastly dif-
erent tumor types as described previously. The evaluation was

arried out with the FE-KSPM architecture for its simplicity, and

he performance was illustrated in Fig. 3 for the GBM and KIRC

atasets. It is clear that the systems based on CMF (CMF-KSPM)

nd PSD (PSD-KSPM) have the top performances, which are due

o i) the critical role of cellular morphometric context during the

athological diagnosis, as suggested in Chang et al. (2013a ); and ii)

he capability of unsupervised feature learning in capturing intrin-

ic morphometric patterns in histology sections. 

.3. Does cellular saliency help? 

CMF differs from DSIFT, DCT and DPSD in that (1) CMF char-

cterizes biological meaningful properties at cellular-level, while

SIFT, DCT and DPSD are purely pixel/patch-level features without

ny specific biological meaning; (2) CMF is extracted per nuclear

egion which is cellular-saliency-aware, while DSIFT, DCT and DPSD

re extracted per regularly-spaced image patch without using cel-

ular information as prior. An illustration of aforementioned feature

xtraction strategies can be found in Fig. 4 . Recent study ( Wu et al.,

013 ) indicates that saliency-awareness may be helpful for the task

f image classification, thus it will be interesting to figure out

hether SIFT, [Color,Texture] and PSD features can be improved by

he incorporation of cellular-saliency as prior. Therefore, we design

alient SIFT (SSFIT), salient [Color,Texture] and salient PSD (SPSD)

eatures, which are only extracted at nuclear centroid locations.

omparison of classification performance between dense features

nd salient features, with the FE-KSPM architecture, is illustrated
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Fig. 3. Evaluation of different f eatures with FE-KSPM architecture on both GBM (left) and KIRC (right) datasets. Here, the performance is reported as the mean and standard 

error of the correct classification rate, as detailed in Section 4 . 

Fig. 4. Illustration of dense feature extraction strategy (left) and salient feature extraction strategy (right), where dense features are extracted on regularly-spaced patches, 

while salient features are extracted on patches centered at segmented nuclear centers. Here, yellow rectangle and red blob represent feature extraction patch/grid and 

segmented nuclear region, respectively. 
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n Fig. 5 for GBM and KIRC datasets, which show that, for SIFT,

Color,Texture] and PSD features, cellular-saliency-awareness plays

 negative role for the task of tissue histology classification. One

ossible explanation is that, different from CMF, which encodes

pecific biological meanings and summarizes tissue image with in-

rinsic biological-context-based representation, SIFT, [Color,Texture] 

nd PSD lead to appearance-based image representation, and thus

equire dense sampling all over the place in order to faithfully as-

emble the view of the image. 

.4. Does the sparse feature encoder help? 

The evaluation of systems with the sparse feature encoder is

arried out with the configuration FE-SFE-LSPM , where LSPM is

sed instead of KSPM for improved efficiency. Classification per-

ormance is illustrated in Fig. 6 and Fig. 7 for the GBM and KIRC

atasets, respectively; and the results show that, compared to FE-

SPM , 

1. For FE = CMF and SFE ∈ {SC,GSC,LLC,LCDL}, FE-SFE-LSPM con-

sistently improves the classification performance for both GBM

and KIRC datasets; 

2. For FE ∈ {SIFT,[Color,Texture]} and SFE ∈ {SC,GSC,LLC,LCDL}, FE-

SFE-LSPM improves the performance for KIRC dataset; while

impairs the performance for GBM dataset; 

3. For FE = PSD, FE-SFE-LSPM improves the performance for both

GBM and KIRC datasets, with SFE = SC; while, in gen-
eral, impairs the performance for both datasets, with SFE ∈
{GSC,LLC,LCDL}. 

The observations above suggest that, the effect of the sparse

eature encoder highly correlates with the robustness of the fea-

ures being used, and significant improvement of performance can

e achieved consistently across different datasets with the choice

f CMF. It is also interesting to notice that, with the choice of

SD, the sparse feature encoder only helps improve the perfor-

ance with sparse coding (SC) as the intermediate feature ex-

raction layer. A possible explanation is that, compared to CMF

hich has real physical meanings, the PSD feature resides in a hy-

er space constructed from unsupervised feature learning, where

uclidean-distance, as a critical part of GSC, LLC and LCDL, may

ot apply. 

Furthermore, it is also interesting and important to know the

ffect of incorporating deep learning for feature extraction. There-

ore, for further validation, we have also evaluated two popu-

ar deep learning techniques, namely Stacked PSD ( Chang et al.,

013d ) and Convolutional Neural Networks (CNN) ( Lecun et al.,

998; Huang and LeCun, 2006; Krizhevsky et al., 2012 ). Specifically,

1. StackedPSD-KSPM: for the evaluation of Stacked PSD, the same

protocol as in Chang et al. (2013d ) is utilized. Briefly, two lay-

ers of PSD, with 2048 (first layer) and 1024 (second layer) ba-

sis functions, respectively, are stacked to form a deep architec-

ture for the feature extraction on 20 × 20 image-patches with

a step-size fixed to be 20, empirically, for best performance. Af-
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Fig. 5. Evaluation of dense feature extraction and salient feature extraction strategies with the FE-KSPM architecture on both GBM (left) and KIRC (right) datasets, where 

solid line and dashed line represent systems built upon dense feature and salient feature, respectively. Here, the performance is reported as the mean and standard error of 

the correct classification rate, as detailed in Section 4 . 
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Fig. 6. Evaluation of the architectures with sparse feature encoders ( FE-SFE-LSPM ) on GBM dataset. Here, the performance is reported as the mean and standard error of 

the correct classification rate, as detailed in Section 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ter the patch-based extraction, the same protocol as shown in

FE-KSPM is utilized for classification. 

2. AlexNet-KSPM: for the evaluation of CNN, we adopt one of

the most powerful deep neural network architecture: AlexNet

( Krizhevsky et al., 2012 ) with the Caffe ( Jia et al., 2014 ) im-

plementation. Given (i) the extremely large scale (60 million

parameters) of the AlexNet architecture; (ii) the significantly

smaller data-scale of GBM and KIRC, compared to ImageNet

( Deng et al., 2009 ) with one thousand categories and millions
of images, where AlexNet is originally trained; and (iii) the sig-

nificant decline of performance due to over-fitting that we ex-

perience with the end-to-end tuning of AlexNet on our dataset

as a result of (i) and (ii), we simply adopt the pre-trained

AlexNet for feature extraction on 224 × 224 image-patches

with a step-size fixed to be 45, empirically, for best perfor-

mance. After the patch-based extraction, the same protocol as

shown in FE-KSPM is utilized for classification. It is worth to
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Fig. 7. Evaluation of the architectures with sparse feature encoders ( FE-SFE-LSPM ) on KIRC dataset. Here, the performance is reported as the mean and standard error of 

the correct classification rate, as detailed in Section 4 . 
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Fig. 8. Evaluation of the effect of incorporating deep learning for feature extraction on both GBM and KIRC datasets. Note that, given the various combinations of FE-SFE- 

L SPM , CMF-LCDL-L SPM and CMF-LLC-L SPM are chosen for GBM and KIRC datasets, respectively, for their best performance. Here, the performance is reported as the mean 

and standard error of the correct classification rate, as detailed in Section 4 . 
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mention that such an approach falls into the categories of both

deep learning and transfer learning. 

Experimental results, illustrated in Fig. 8 , suggest that, 

1. Both sparse feature encoders and feature extraction strategies

based on deep learning techniques consistently improve the

performance of tissue histology classification; 

2. The extremely large-scale convolutional deep neural networks

(e.g., AlexNet), pre-trained on extremely large-scale dataset

(e.g., ImageNet), can be directly applicable to the task of tissue

histology classification due to the capability of deep neural net-

works in capturing transferable base knowledge across domains
( Yosinski et al., 2014 ). Although the fine-tuning of AlexNet to-

wards our datasets shows significant performance drop due

to the problem of over-fitting, the direct deployment of pre-

trained deep neural networks still provides a promising solu-

tion for tasks with limited data and labels, which is very com-

mon in the field of medical image analysis. 

.5. Revisit on spatial pooling 

To further study the impact of pooling strategy, we also pro-

ide extensive experimental evaluation on one of the most popu-

ar pooling strategies (i.e., max pooling) in place of spatial pyramid
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Fig. 9. Evaluation of the impact of different spatial pooling strategies with the FE-SFE-LSPM framework on both GBM and KIRC datasets. Note that, given many of the popular 

spatial pooling strategies, max pooling is chosen due to the extensive justification by both biophysical evidence in the visual cortex and researches in image categorization 

tasks. The derived architecture is described as FE-SFE-Max , and only the top-two-ranked features (i.e., DPSD and CMF) are involved during evaluation. Here, the performance 

is reported as the mean and standard error of the correct classification rate, as detailed in Section 4 . 
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matching within FE-SFE-LSPM framework, which is defined as fol-

lows, 

max : f j = max {| c 1 j | , | c 2 j | , . . . , | c M j |} (7)

where C = [ c 1 , . . . , c M 

] ∈ R 

b×M is the set of sparse codes extracted

from an image, c ij is the matrix element at i-th row and j-th col-

umn of C , and f = [ f 1 , . . . , f b ] is the pooled image representation.

The choice of max pooling procedure has been justified by both

biophysical evidence in the visual cortex ( Serre et al., 2005 ) and

researches in image categorization ( Yang et al., 2009 ), and the de-

rived architecture is described as FE-SFE-Max . In our experimen-

tal evaluation, we focus on the top-two-ranked features (i.e., DPSD

and CMF), where the corresponding comparisons of classification

performance are illustrated in Fig. 9 . It is clear that systems with

SPM pooling consistently outperforms systems with max pooling

with various combinations of feature types and sparse feature en-

coders. A possible explanation is that the vector quantization step

in SPM can be considered as an extreme case of sparse coding (i.e.,

with a single non-zero element in each sparse code); and the local

histogram concatenation step in SPM can be considered as a spe-

cial form of spatial pooling. As a result, SPM is conceptually simi-

lar to an extra layer of sparse feature encoding and spatial pooling,

as suggested in Jarrett et al. (2009) , and therefore leads to an im-

proved performance, compared to the architecture with max pool-

ing. 
.6. Revisit on computational cost 

In addition to classification performance, another critical factor,

n clinical practice, is the computational efficiency. Therefore, in

his section, we provided a detailed evaluation on computational

ost of various systems. Given the fact that (i) training can al-

ays be carried out off-line; (ii) the classification of the systems in

valuation are all based on linear SVM, our evaluation on compu-

ational efficiency focuses on on-line feature extraction (including

parse feature encoding), which is the most time-consuming part

uring the testing phase. As shown in Table 5 , 

1. SIFT features are the most computational efficient features

among all the ones in comparison. However, the systems built

on SIFT features greatly suffer from the technical variations and

biological heterogeneities in both datasets, and therefore are

not good choices for the classification of tissue histology sec-

tions; 

2. Given the fact that the nuclear segmentation is a prerequisite

for salient feature extraction (e.g., SPSD, SSIFT and SCT), sys-

tems built upon salient features may not be necessarily more

efficient than systems built upon dense features. Furthermore,

since the salient features typically impair the tissue histol-

ogy classification performance, they are therefore not recom-

mended; 
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Table 5 

Average computational cost (measured in second) for feature extraction (including sparse fea- 

ture encoding) on images with size 10 0 0 × 10 0 0 pixels. The evaluation is carried out with 

Intel(R) Xeon(R) CPU X5365 @ 3.00GHz, and GeForce GTX 580. 

Feature Extraction Component(s) Average Computational Cost (in second) 

Nuclear Segmentation 40 

CMF- SFE 42 = Nuclear-Segmentation-Cost(40) + SFE-Cost(2) 

DPSD- SFE 115 = DPSD-Cost(95) + SFE-Cost(20) 

SPSD- SFE 70 = SPSD-Cost(60) + SFE-Cost(10) 

DSIFT- SFE 16 = DSIFT-Cost(10) + SFE-Cost(6) 

SSIFT- SFE 47 = SSIFT-Cost(45) + SFE-Cost(2) 

DCT- SFE 90 = DCT-Cost(80) + SFE-Cost(10) 

SCT- SFE 108 = SCT-Cost(105) + SFE-Cost(3) 

CMF 40 = Nuclear-Segmentation-Cost(40) 

DPSD 95 

SPSD 60 = Nuclear-Segmentation-Cost(40) + PSD-Cost(20) 

DSIFT 10 

SSIFT 45 = Nuclear-Segmentation-Cost(40)+SIFT-Cost(5) 

DCT 80 

SCT 105 = Nuclear-Segmentation-Cost(40) + SCT-Cost(65) 

StackedPSD 100 

AlexNet 1200/180 (CPU-Only/GPU-Acceleration) 

Table 6 

PredictiveSFE achieved 40X speed-up, compared to SFE , in sparse cellular morphometric feature 

extraction. The evaluation was carried out with Intel(R) Xeon(R) CPU X5365 @ 3.00GHz . 

Sparse Cellular Morphometric Feature Extraction Average Computational Cost (in second) 

PredictiveSFE 0 .05 

SFE 2 
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3. The gain in performance of sparse feature encoders in our eval-

uation is at the cost of computational efficiency. And the scal-

ability of derived systems can be improved by (i) the devel-

opment of more computational-efficient algorithms, which was

demonstrated in Table 6 ; and (ii) the deployment of advanced

computational techniques, such as cluster computing or GPU

acceleration for clinical deployment, which was demonstrated

in Table 5 for AlexNet. 

4. Most interestingly, the sparse feature encoder, based on CMF-

SFE , is much more efficient even compared to many shallow

architectures based on PSD or CT features; and, it is only 5%

slower compared to its corresponding shallow version, based on

CMF. The computational efficiency are due to (i) the high spar-

sity of nuclei compared to dense image patches (e.g., 350 nu-

clei/image v.s. 20 0 0 patches/image); and (ii) the extremely low

dimensionality of cellular morphometric features compared to

other features (e.g., 15 nuclear morphometric features v.s. 128

SIFT features, 203 CT features and 1024 PSD features). Further-

more, in computational histopathology, both nuclear-level infor-

mation (based on nuclear segmentation) and patch-level infor-

mation (based on tissue histology classification) are very critical

components, which means the nuclear segmentation results can

be shared across different tasks for the further improvement of

the efficiency of multi-scale integrated analyses. 

To further improve the scalability of systems built-upon CMF-

FE , as a demonstration of algorithmic-scaling-up of sparse feature

ncoders, we constructed a predictive sparse feature encoder ( Pre-

ictiveSFE ) in place of SFE as follows, to approximate the morpho-

etric sparse codes, specifically, provided by Eq. 2 , 

min 

 , C , G , W 

‖ Y − BC ‖ 

2 
F + λ‖ C ‖ 1 + ‖ C − G σ (WY ) ‖ 

2 
F 

.t. ‖ b i ‖ 

2 
2 = 1 , ∀ i = 1 , . . . , h (8) 

here Y = [ y 1 , . . . , y N ] ∈ R 

m ×N is a set of cellular morphometric

escriptors; B = [ b 1 , . . . , b h ] ∈ R 

m ×h is a set of the basis functions;

 = [ c 1 , . . . , c N ] ∈ R 

h ×N is the sparse feature matrix; W ∈ R 

h ×m is

he auto-encoder; σ ( · ) is the element-wise sigmoid function;
 = diag (g 1 , . . . , g h ) ∈ R 

h ×h is the scaling matrix with diag being an

perator aligning vector, [ g 1 , . . . , g h ] , along the diagonal; and λ is

he regularization constant. Joint minimization of Eq. (8) w.r.t the

uadruple < B, C, G, W > , enforces the inference of the nonlin-

ar regressor G σ ( WY ) to be similar to the optimal sparse codes,

 , which can reconstruct Y over B ( Kavukcuoglu et al., 2008 ). As

hown in Algorithm 1 , optimization of Eq. (8) is iterative, and it

lgorithm 1 Construction of the Predictive Sparse Feature Encoder

PredictiveSFE). 

equire: Training set Y = [ y 1 , . . . , y N ] ∈ R 

m ×N 

nsure: Predictive Sparse Feature Encoder W ∈ R 

h ×m 

1: print Randomly initialize B , W , and G 

2: repeat 

3: Fixing B , W and G , minimize Eq. (8) w.r.t C , where C can be

either solved as a � 1 -minimization problem Lee et al. (2007)

or equivalently solved by greedy algorithms, e.g., Orthogonal

Matching Pursuit (OMP) Tropp and Gilbert (2007) . 

4: Fixing B , W and C , solve for G , which is a simple least-square

problem with analytic solution. 

5: Fixing C and G , update B and W , respectively,using the

stochastic gradient descent algorithm. 

6: until Convergence (maximum iterations reached or objective

function ≤ threshold) 

erminates when either the objective function is below a preset

hreshold or the maximum number of iterations has been reached.

n our implementation, the number of basis functions ( B ) was fixed

o be 128, and the SPAMS optimization toolbox ( Mairal et al., 2010 )

s adopted for efficient implementation of OMP to compute the

parse code, C , with sparsity prior set to 30. The end result is

 highly efficient (see Table 6 ) and effective (see Fig. 10 ) system,

MF- PredictiveSFE -KSPM, for tissue histology classification. 
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Fig. 10. Systems built-upon CMF- PredictiveSFE provide very competitive performance compared to systems built-upon CMF- SFE . Here, the performance is reported as the 

mean and standard error of the correct classification rate, as detailed in Section 4 . 
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5. Conclusions 

This paper provides insights to the following three fundamental

questions for the task of tissue histology classification: 

I. Is unsupervised feature learning preferable to human engi-

neered features? The answer is that, CMF and PSD work the

best, compared to SIFT and [Color,Texture] features, on two

vastly different tumor types. The reasons are that (i) CMF en-

codes biological meaningful prior knowledge, which is widely

adopted in the practice of pathological diagnosis; and (ii) PSD

is able to capture intrinsic morphometric patterns in histology

sections. As a result, both of them produce robust representa-

tion of the underlying properties preserved in the data. 

II. Does cellular saliency help? The surprising answer is that cel-

lular saliency does not help improve the performance for sys-

tems built upon pixel-/patch-level features. Experiments on

both GBM and KIRC datasets confirm the performance-drop

with salient feature extraction strategies, and one possible ex-

planation is that both pixel-level and patch-level features are

appearance-based representations, which require dense sam-

pling all over the place in order to faithfully assemble the view

of the image. 

II. Does the sparse feature encoder contribute of recognition? The

sparse feature encoder significantly and consistently improves

the classification performance for systems built upon CMF; and

meanwhile, it conditionally improves the performance for sys-

tems built upon PSD (PSD-SC-LSPM), with the choice of sparse

coding (SC) as the intermediate feature extraction layer. It is

believed that the consistency of performance highly correlates

with the robustness of the feature being used, and the improve-

ment of performance is due to the capability of the sparse fea-

ture encoder in capturing complex patterns at the higher-level.

Furthermore, this paper provides a clear evidence that deep

neural networks (i.e., AlexNet), pre-trained on large scale nat-

ural image datasets (i.e., ImageNet), is directly applicable to the

task of tissue histology classification, which is due to the ca-

pability of deep neural networks in capturing transferable base

knowledge across domains ( Yosinski et al., 2014 ). Although the

fine-tuning of AlexNet towards our datasets shows significant

performance drop due to the problem of over-fitting, the direct

deployment of pre-trained deep neural networks still provides a
promising solution for tasks with limited data and labels, which

is very common in the field of medical image analysis. 

Besides the insights in the aforementioned fundamental ques-

ions, this paper also shows that the superior performance of the

parse feature encoder is at the cost of computational efficiency.

owever, the scalability of the sparse feature encoder can be im-

roved by (i) the development of more computational-efficient

lgorithms; and (ii) the deployment of advanced computational

echniques, such as cluster computing or GPU acceleration. As a

emonstration, this paper provides an accelerated version of CMF-

FE , namely CMF- PredictiveSFE , which falls into the category of

lgorithmic-scaling-up and achieves 40X speed-up during sparse

eature encoding. The end result is a highly scalable and effec-

ive system, CMF- PredictiveSFE -KSPM, for tissue histology classi-

cation. 

Furthermore, all our insights are independently validated on

wo large cohorts, Glioblastoma Multiforme (GBM) and Kidney

lear Cell Carcinoma (KIRC), which, to the maximum extent, en-

ures the consistency and unbiasedness of our findings. To the best

f our knowledge, this is the first attempt that systematically pro-

ides insights to the fundamental questions aforementioned in tis-

ue histology classification; and there are reasons to hope that the

onfiguration: FE-SFE-LSPM ( FE ∈ {CMF,PSD}) as well as its accel-

rated version: FE-PredictiveSFE-KSPM ( FE ∈ {CMF,PSD}), can be

idely applicable to different tumor types. 
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