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Abstract
Integrated analysis of tissue histology with the genome-wide array and clinical data has the potential to 
generate hypotheses as well as be prognostic. However, due to the inherent technical and biological varia-
tions, automated analysis of whole mount tissue sections is impeded in very large datasets, such as The 
Cancer Genome Atlas (TCGA), where tissue sections are collected from different laboratories. We aim 
to characterize tumor architecture from hematoxylin and eosin (H&E) stained tissue sections, through 
the delineation of nuclear regions on a cell-by-cell basis. Such a representation can then be utilized to 
derive intrinsic morphometric subtypes across a large cohort for prediction and molecular association. 
Our approach has been validated on manually annotated samples, and then applied to a Glioblastoma 
Multiforme (GBM) cohort of 377 whole slide images from 146 patients. Further bioinformatics analysis, 
based on the multidimensional representation of the nuclear features and their organization, has identified 
(i) statistically significant morphometric sub types; (ii) whether each subtype can be predictive or not; and 
(iii) that the molecular correlates of predictive subtypes are consistent with the literature. The net result 
is the realization of the concept of pathway pathology through analysis of a large cohort of whole slide 
images.

1  INTRODUCTION

The interaction between underlying molecular defects and environmental factors can 
be captured by tumor histopathology; thus, we hypothesize that quantification of histol-
ogy sections on a cell-by-cell basis in terms of morphological features and organization, 
leads to a new systems biology approach for the characterization and identification of 
molecular markers of tumor composition. As opposed to genome-wide array data, the 
large-scale quantitative characterization of tumor morphology from standard hematoxy-
lin and eosin (H&E) stained tissue sections can offer alternative views for subtyping and 
survival analysis. Furthermore, computed morphometric indices can be tested against out-
come. Meanwhile, derived representations (e.g., meta-features), from cellular level quan-
titative analysis, can also be utilized to probe for tumor heterogeneity and its underlying 
molecular basis. To answer the questions about morphometric indices that are predic-
tive of the outcome, we have developed a computational pipeline to process large cohorts 
of whole mount tissue sections, which have been collected through The Cancer Genome 
Atlas (TCGA). 

The computational pipeline consists of advanced algorithms for nuclear delineation (Chang 
et al. 2013-b) and tissue classification (classifying tissue into different component, e.g., tumor, 
necrosis), which are implemented efficiently to operate in a high performance computing 
environment on decomposed tissue blocks of 1k-by-1k pixels. The net result is a multidimen-
sional representation of the tissue block that captures features at both nuclear level (e.g., size, 
shape, cellular density) and patch level (e.g., necrosis ratio). To tackle the large amount of 
technical and biological variations, expert annotated images with corresponding image-
derived features (e.g., shape, intensity) are used for the construction of prior knowledge based 
on the Gaussian Mixture Model (GMM). In this context, the key contribution is to (i) utilize a 
dictionary of images for the characterization of technical variations and biological heterogene-
ity, and (ii) label each nucleus in the context of tumor histopathology, subjecting to spatial 
continuity with a graphcut formulation (Demir 2009; Latson et al. 2003). Nuclear architecture 
and organization are then constructed per patient as equal probability histograms that are 
normalized across all patients. A total of 377 GBM tumor sections from 146 patients are 
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initially include a morphometric index, is examined for subtyping at patient level. Organization 
of the book chapter is as follows. Section 2 reviews prior literature. Section 3 summarizes 
nuclear segmentation and patch-based classification. Section 4 presents subtyping analysis 
and the characterization of heterogeneity. Section 5 describes the soft ware architecture. Section 
6 concludes the chapter.

2  BACKGROUND

Histology sections are typically visualized with H&E stains that label DNA and protein 
contents, in various shades of color. Generally, these sections are rich in content since var-
ious cell types, cell states and health, cellular secretion, and cellular organization can be 
characterized by a trained pathologist with the caveat of inter and intra-observer variations 
(Dalton et al. 2000). Several reviews for the application and analysis of H&E sections can be 
found in Chang et al. (2011-a, 2013-b), Gurcan et al. (2009), Demir (2009). From our perspec-
tive, the trend and direction of the research community focuses on the following three key 
concepts.

The first key concept involves tumor grading through either rough or accurate nuclear 
segmentation (Latson et al. 2003) followed by cellular organization characterization (Doyle 
et al. 2011) and classification. In some cases, tumor grading has been associated with progres-
sion, recurrence, and invasion carcinoma (e.g., breast DCIS), where outcome is highly depen-
dent on mixed grading (e.g., presence of more than one grade) and tumor heterogeneity. 
Since mixed grading appears to be present in 50% of patients (Miller et al. 2001), it introduces 
significant challenges to the pathologists. A recent study indicates that DCIS recurrence 
(Axelrod et al. 2008) in patients with more than one nuclear grade can be predicted through 
detailed segmentation and multivariate representation of nuclear features from H&E stained 
sections. In this study, nuclear regions were manually segmented from H&E stained samples, 
and each nucleus was profiled with a multidimensional representation. The significance of 
this particular study is that it has been repeated quantitatively to indicate prognostic out-
come. In other related studies, nuclear features have also been shown to contribute to diagno-
sis and prognosis values for carcinoma of the colorectal mucosa (Verhest et al. 1990), prostate 
(Veltri et al. 2004), and breast (Mommers et al. 2001).

The second concept focuses on the patch-based (e.g., region-based) analysis of tissue sec-
tions based on features either engineered by human (Bhagavatula et al. 2010; Kong et al. 2010; 
Han et al. 2011; Kothari et al. 2012) or generated through automatic feature learning (Le et al. 
2012; Huang et al. 2011). Automatic feature learning, in its simplest form, is based on inde-
pendent component analysis (ICA), which computes kernels corresponding to oriented edge 
detectors. Another example is the independent subspace analysis (ISA), which learns invari-
ant kernels from the data through non-linear mapping (Le et al. 2012). Yet, one of the short-
comings of ISA is that it lacks the ability to reconstruct original data, which can be attributed 
to its strict feed forward nature. However, this ability can be offered by some other tech-
niques, such as Restricted Boltzmann Machines (RBM) (Hinton 2006) and Predictive Sparse 
Decomposition (PSD) (Kavukcuoglu 2008).

The last key concept suggests utilizing the detection of specific cells in the autoimmune sys-
tem (e.g., lymphocytes) as a prognostic tool for breast cancer (Fatakdawala et al. 2010). As part 
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of the adaptive immune response, the presence of lymphocytes has been correlated with nodal 
metastasis and HER2-positive breast cancer, GBM, and ovarian cancer  (Zhang et al. 2003).

3  MORPHOMETRIC REPRESENTATION

Morphometric representation is in the context of nuclear segmentation and classification of 
tumor histopathology. Each component is summarized below.

3.1  Nuclear segmentation

The main barriers in nuclear segmentation are biological heterogeneity (e.g., cell type) 
and technical variations (e.g., fixation), which are visible in the dataset provided by TCGA. 
Present techniques have focused on thresholding with a subsequent  morphological operation 
(Phukpattaranont et al. 2007; Ballaro et al. 2008; Petushi et al. 2006); fuzzy techniques (Latson 
et al. 2003; Land et al. 2008); geodesic active contour models (Fatakdawala et al. 2010; Glotsos 
et al. 2004); color separation followed by optimum thresholding and learning (Chang et al. 2009; 
Cosatto et al. 2008); hierarchical self-organizing map (Datar et al. 2008); and spectral clustering 
(Doyle et al. 2008). Several examples are given below. In Bunyak et al. (2011), multiphase level 
sets (Nath et al. 2006; Chang and Parvin 2010) were used for nuclear segmentation based on 
seeds detected through iterative radial voting (Parvin et al. 2007). In Al-Kofahi et al. (2010), the 
input image was initially classified into foreground and background regions with graph cut. The 
seeds were then collected from the foreground regions via a constrained multiscale Laplacian of 
Gaussian (LoG) filter and final segmentation was generated by coupling the classification along 
with seeds within graph cut framework. Similarly, in Kong et al. (2011), color texture extracted 
from the most discriminant color space was used to binarize the normalized input image into 
foreground and background regions; this was followed by an iterative operation, based on 
concave points and radial-symmetry, to split touching nuclei. Recently, a spatially constrained 
expectation maximization algorithm (Monaco et al. 2012) was proposed to address the “color 
nonstandardness” in histological sections in the HSV color space; however, the evidence shown 
in Section 3.1.7 B (MRGC vs MRGC-CF) indicates that strict incorporation of color and spatial 
information will not be sufficient. Another related work (Kothari et al. 2011) was built upon a 
consensus concept, where the labels were determined by multiple classifiers constructed from 
different reference images; we will refer to this method as MCV (multiclassifier voting), for 
short, in the rest of the book chapter. Although, MCV provides a better handler for the variation 
in the data; however, it is still possible to have noisy and erroneous classification (as shown in 
Figure 18.7), which is due to the lack of local statistical information and smoothness constraint.

In summary, the techniques above are often specific to small datasets that originate from a 
single laboratory, and ignore both the cellular heterogeneity (e.g., variation in chromatin pat-
terns) and the technical variations manifested in both nuclear and background signals. As 
shown in Figure 18.1, our goal is to enable the processing of whole mount tissue sections, 
from multiple laboratories, to construct a large database of morphometric features, and to 
enable subtyping and genomic association.

Figure 18.2 shows the details of the proposed approach, where several key observations are 
leveraged for classifying nuclear regions: (i) global variations, across a large cohort of tissue 
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FIGURE 18.1  Work flow in nuclear segmentation for a cohort of whole mount tissue sections.

FIGURE 18.2  Steps in nuclear segmentation.
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sections, can be captured by a representative set of reference images, (ii) local variations, within 
an image, can be captured by local foreground (nuclei)/background samples detected by LoG 
filter, and (iii) variations in image statistics, between a test image and a reference image, can be 
reduced by color normalization. These concepts are integrated within a graph cut framework, to 
separate the nuclei or clumps of nuclei from the background. Afterwards, the potential clumps 
of nuclei are partitioned through geometric reasoning. In the rest of this section, we summarize 
(a) the construction of the global prior models from a diverse set of reference images, (b) the 
strategy for color normalization, (c) the strategy for dimension reduction based on color trans-
formation, (d) the details of feature extraction, (e) the multireference graph cut formalism for 
nuclei/background separation, and (f) the partitioning of a clump of nuclei into individual 
nucleus.

3.1.1  Construction and representation of priors

This step aims to capture the global variations for an entire cohort based on a well-con-
structed reference library. In our analysis, the target cohort consists of 377 individual tissue 
sections, from which a representative of N (N = 20) reference images of 1k-by-1k pixels at 20X 
have been selected by expert, based on staining and morphometric properties, in such a way 
that each one of them is a unique exemplar of tumor phenotypes. Therefore, we suggest that 
each reference image possesses a unique feature space, in terms of RGB and LoG responses, 
that leads to 2N feature spaces for the reference set:

where FN+i
LoGi

 and Fi
RGBi

 and are LoG feature space and RGB feature spaces, respectively, for 
the ith referencee image, 1 ≤ i ≤ N. Subsequently, each reference image is manually seg-
mented and processed with a LoG filter (please refer to Section 3.1.3 for the details on our 
LoG integration), at a fixed scale, followed by the collection of foreground (nuclei) and back-
ground statistics in both the LoG response and RGB space. Due to the distinct modes in 
feature spaces, we choose to capture the heterogeneities with GMM. Hence, the conditional 
probability for pixel, p, with feature, f k(p), in the kth (k Œ [1, 2N]) feature space, belonging to 
either nuclear region (l = 1) or the background region(l = 0) can be expressed as a mixture 
with D component densities:

Here p(j) is the mixing parameter, which corresponds to the weight of component j, and 
∑D

j=1P(j) = 1. Each mixture component is a Gaussian with mean μ and covariance matrix Σ, 
in the corresponding feature space:
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where P(j) and (μj, ∑j) for p̃(Cp|j) are estimated by expectation maximization (EM) algorithm 
(Tomasi).

3.1.2  Color normalization
The purpose of color normalization is to reduce the variations between an input test image 

and a reference image in image statistics. Thus, the prior models, constructed from each ref-
erence image, can be applied. Here, we adopted the color map normalization (Kothari et al. 
2011) for its effectiveness on histological images. Let

•	 input image, I, and reference image, Q, have KI and KQ unique color triplets, respectively, 
in terms of (R, G, B);

•	 R
I/Q
C  be a monotonic function, which maps the intensity of a specific color channel,  

C ∈ {R, G, B}, from Image I or Q to a rank that is in the range [0, KI) or [0, KQ);
•	 (rp, gp, bp) be the color of pixel p, in image I, and (RI

R(rp), R
I
G(Gp), R

I
B(bp)) be the ranks for 

intensities in each color channel; and
•	 the intensity values rref, gref, and bref in each color channel, from image Q, have ranks:

As a result, the color for pixel, p: (rp, gp, bp), will be normalized as (rref, gref, bref). Different 
from standard quantile normalization, which utilizes all pixel values in the image, color 
map normalization is based on the unique colors in the image, thereby, excludes color 
frequencies as a result of technical variations and tumor heterogeneity. Figure 18.2 shows 
some examples of color map normalization.

3.1.3  Color transformation
For more efficient integration of the LoG responses, a color transformation step is preferred to 

transform RGB space into a gray-level image for the accentuation of the nuclear stain and attenu-
ation of background. Since present techniques in color decomposition (Rabinovich et al. 2003; 
Ruifork and Johnston 2001) are either very time-consuming or do not yield favorable outcomes, 
a more efficient strategy, which we refer to as blue ratio transformation, is proposed as follows: 
BR(x, y) =

100∗B(x,y)

1+R(x,y)+G(x,y)
× 256

1+B(x,y)+R(x,y)+G(x,y)
, where B(x, y), R(x, y), and G(x, y) are the respective blue, 

red, and green intensities at position (x, y). In this formulation, the first and second terms accentu-
ates nuclear stain while, the second term attenuates the background signals. Subsequently, the 
LoG responses are always computed at a single scale from the blue ratio image. In Figure 18.3 , we 
demonstrates the improvements resulting from the blue ratio transformation compared to color 
decomposition (Ruifork and Johnston 2001).

(18.4)
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3.1.4  Feature extraction

We integrate both color and scale information, where the color information is directly from 
the RGB space, and the scale information is encoded by the LoG response. The following are 
steps for feature extraction:

1.	 Normalize the input image against every reference image, as described in Section 3.1.2;
2.	 Transform each normalized image into a blue ratio image, as described in Section 3.1.3;
3.	 Apply the LoG filter to each blue ratio image, at a fixed scale; and
4.	 Represent each pixel, in the test image, by its RGB color in each of the normalized images 

and the LoG response, from each of the blue ratio images.

As a result, each pixel in the test input image, where the first N features are normalized 
RGB colors, and the last N features are LoG responses extracted from the blue ratio of the 
normalized images. All 2N features are assumed to be independent of each other, per the 
selection of reference images. The rational for our feature extraction strategy is that: (1) color 
information is insufficient for the delineation of nuclear regions from the background due to 
large variations in the data; (2) the scales of the nuclear region and background structure are 
typically different; and (3) the nuclear region responds well to LoG filter (Al-Kofahi et  al. 
2010).

3.1.5  Multi-reference graph cut model
Since the  intrinsic and extrinsic variations in a cohort are incorporated within a graph cut 

framework, the image is represented as a graph, G = �V̄, Ē�, where V̄ is the set of all nodes, 
and Ē is the set of all arcs connecting adjacent nodes. Though the nodes and edges typically 
correspond to the pixels (P) and their adjacency relationships, respectively, there are special 
nodes known as terminals, which correspond to the set of labels to be assigned to the pixels. 

(a) (b) (c)

FIGURE 18.3  (a) Two diverse pinhole of tumor signatures; (b) decompositions by Ruifork and Johnston (2001); 
(c) blue ratio images. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this book.)
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For graphs with two terminals, the terminals are generally referred to as the source (S) and 
the sink (T). The labeling problem is to assign a unique label xp (1 for foreground, and 0 for 
background) for each node, p ∈ V̄, which is performed by minimizing the Gibbs energy E 
(Geman et al. 1984):

where Efitness(xp) encodes the data fitness cost for assigning xp to p, and Esmoothness(xp, xq) denotes 
the cost when the labels of adjacent nodes, p and q, are xp and xq, respectively; additionally, β 
is the weight for Esmoothness. For more information regarding the Goldberg-Tarjan “push-rela-
bel” methods (Goldberg and Tarjan 1988), and Ford-Fulkerson “augmenting paths” (Ford 
and Fullkerson 1962), the two groups of algorithms utilized in the graph cut optimization, 
please see  Cook et al. (1998).

To capture the intrinsic variations of the nuclear signature, we expressed, the data fitness 
term as a combination of the global property map and intrinsic local probability map, where the 
former captures the global variations of the cohort, and the latter captures local intrinsic image 
property in the absence of color map normalization. Equation 18.5 is then rewritten as

where Egf and Elf are the global and local data fitness terms, respectively, encoding the fitness 
cost for assigning xp to p. Below, we discuss each of the terms together with the optimization 
process.

3.1.5.1  GLOBAL FITNESS TERM

The global fitness is constructed based on manually annotated reference images. Assume 
that there are N reference images: Qi, i ∈ [1, N]. Additionally, for each reference image, GMMs 
are used to model the nuclear signal and background in both RGB space and LoG response 
space, respectively: GMMk

Nuclei, GMMk
Background, in which k ∈ [1, 2N], and the first N GMMs are for 

the RGB space, and the last N GMMs are for LoG response space.
A normalized image, Ui, is first generated for the input test image, I, with respect to every 

reference image, Qi. Subsequently, color and LoG responses of Ui are collected to construct 2N 
features per pixel, where the first N features are from the normalized color space, and the 
second N features are from LoG responses. Let,

•	 p be a node corresponding to a pixel;
•	 fk(p) be the kth feature of p;
•	 α be the weight of LoG response;
•	 p

k
i
 be the probability function of f  k being nuclei (l = 1)/background (l = 0):

•	 λi be the weight for Qi:

(18.5)E =
∑

p∈V̄

Efitness(xp) + β
∑

(p,q)∈Ē

Esmoothness(xp, xq)

(18.6)E =
∑

p∈V̄

(Egf (xp) + Elf (xp)) + β
∑

(p,q)∈Ē

Esmoothness(xp, xq)

(18.7)p
k
l (p) =

GMMk
l (p)

∑1

j=0GMMk
j (p)

Author’s personal copy



432	 18.  Molecular Correlates of Morphometric Subtypes in Glioblastoma Multiforme 	

	 where ||·|| is L2 norm, HC(·) is the histogram function on a specific color channel  
C ∈ {R,G,B} of an image. Intuitively, λ measures similarity between two histograms 
derived from Qi and Ui. It weighs the fitness for the application of the prior model, 
constructed from Qi, onto the features extracted from the normalized image Ui.

	 Thus, the global fitness term is then defined as

where the first and second terms integrate normalized color features, and the second inte-
grates the  LoG responses.

3.1.5.2  LOCAL FITNESS TERM

At the cohort level, the global fitness term is designed through the utilization of both color 
and LoG information in the feature spaces of the references. However, the incorporation of 
information in the original color space of the input image is also important due to the local 
variations for a number of reasons, i.e., local lesions, non-uniformity in the tissue sections, etc. 
Taking this into consideration, the local data fitness of pixel, p, is constructed from the fore-
ground and background samples in the neighborhood around p. These samples are detected 
by a LoG filter on the blue ratio image, where positive and negative peaks of the LoG responses 
often, but not always, correspond to the background and foreground (nuclear region), respec-
tively. The following are details of the construction of the local fitness term:

1.	 Samples collection: This step aims to provide local foreground and background samples 
for further modeling of local image statistics. Figure 18.4 gives an example of the typical 
positive and negative peak responses associated with the LoG filter. To further improve 
the accuracy of the detected samples we've implemented the protocol outlined below:
a.	 Create a blue ratio image (Section 3.1.3): In this transformed space, the preferred 

frequency of the background intensity always corresponds to the peak of the intensity 
histogram.

b.	Construct distributions of the foreground and background: here, we apply the LoG 
filter on the blue ratio image, and construct distributions of the blue ratio intensity at 
the detected peaks corresponding to the negative and positive LoG responses, respec-
tively. Accuracy of detected samples can be improved in the following step.

c.	 Constrain the sample selection: Three criteria are applied to improve the accuracy 
of detected samples: (i) the LoG responses must be above a minimum conservative 
threshold to remove noise introduced by artifacts; (ii) the intensity associated with 

(18.8)
λi =

1

3

C∈{R,G,B}
∑

c

λ
C
i

λ
C
i = HC

(Qi)H
C
(Ui)/(||H

C
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C
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foreground samples must concur with the background peak, specified in step (a); and 
(iii) within a small neighborhood of w1 × w1, the minimum blue ratio intensity, at the 
location of negative seeds, is set as the threshold for background peaks, as shown in 
Figure 18.5.

2.	 Local foreground and background color modeling: Foreground and background statis-
tics, for each pixel, p, within a local neighborhood, w2 × w2, are represented by two 
GMMs in the original color space, which correspond to the nuclei and background 
models,  GMMLocal

Nuclei, and GMMLocal
Background, respectively.

Then the definition of the local fitness term is:

(18.10)Elf (xp = i) = −γ log(pl(f (p)))

FIGURE 18.4  An example of the LoG response for detection of foreground (green dot) and background (blue dot) 
signals indicates an excellent performance on the initial estimate. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this book.)

FIGURE 18.5  LoG responses can be either positive (e.g. potential background) or negative (e.g. foreground or 
part of foreground) in the transformed blue ratio image. In the blue ratio image with the most negative LoG response, 
the threshold is set at the minimum intensity. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this book.)
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where f(p) refers to the RGB feature of node (pixel), p, in the original color space; γ weights 
the local fitness term; pl is the probability function of f being Nuclei (l = 1)/background  
(l = 0), which results in

3.1.5.3  SMOOTHNESS TERM

While both global and local data fitness terms encode the likelihood of a pixel being fore-
ground/background, the smoothness term ensures the smoothness of labeling between 
adjacent pixels. In the graph configuration, fitness and smoothness are encoded by t-links 
(links between node and terminals) and n-links (links between adjacent nodes), respec-
tively. Therefore, in order to utilize geodesic information, we follow the setup in Boykov 
and Kolmogorov (2003) for n-links. As a result, the max-flow/min-cut solution for the graph 
corresponds to a local geodesic or, in a continuous case, to a minimal surface. Given the 
weighted graph, G = �V̄, Ē�, constructed in Section 3.1.5. Let,

•	 {ek|1 ≤ k ≤ nG} be a set of vectors for the neighborhood system, where nG is the  
order of the neighborhood system, and the vectors are ordered by their corresponding 
angle φk with respect to the +x axis, such that 0 ≤ φ1 < φ2 ⋯ < φnG < π. For example, 
when nG = 8, we have e1 = (1, 0), e2 = (1, 1), e3 = (0, 1), e4 = (−1, 1), as shown in  
Figure 18.6(a);

•	 wk be the weight for the edge between pixels: p and q, which are in the same 
neighborhood system, and �pq = ±ek ;

•	 L be a line formed by the edges in the graph, as shown in Figure 18.6(c);
•	 C be a contour in the same 2D space where graph G is embedded, as shown in 

Figure 18.6(b);
•	 |C|G be the cut metric of C, as in

(18.11)pl(p) =
GMMLocal

l (p)
∑1

j=0GMMLocal
j (p)

(18.12)
|C|G =

∑

e∈ĒC

We

(a) (b) (c)

FIGURE 18.6  (a) Eight-neighborhood system: nG = 8; (b) contour on eight-neighborhood 2D grid; (c) one family 
of lines formed by edges of the graph.
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where ĒC is the set of edges intersecting contour C;
•	 |C|R be the Riemannian length of contour C; 
•	 D(p) be the metric(tensor), which continuously varies over point, p, in the 2D Riemannian 

space;

Based on Integral Geometry (Santalo 1979), the Crofton-style formula for the Riemannian 
length, |C|R of contour C, can be written as,

where uL is the unit vector in the direction of the line L, and nC is a function that specifies the 
number of intersections between L and C. According to Boykov and Kolmogorov (2003), the 
local geodesic can be approximated by the max-flow/min-cut solution (|C|G → |C|R) with 
the following edge weight setting:

(18.13)

∫

detD(p)

2(uT
L · D(p) · uL)

3
2

ncdL = 2|C|R

(18.14)Wk(p) =
δ

2 · |ek|
2 · �φk · detD(p)

2 · (eT
k · D(p) · ek)

3
2

(a)
(b)

(d)(c)

FIGURE 18.7  A comparison between MCV and MRGC (as shown in (c) and (d), respectively) based on the same 
reference image, as shown in (a). Even though the test image and the reference image are slightly different in color 
space, compared with MCV, MRGC still produces (1) more accurate classification, due to the encoding of statistics 
from test image’s color space via local probability map; (2) less noisy classification due to the smoothness constrain.
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where δ is the cell-size of the grid, ▵φk is the angular difference between the kth and (k + 1)th 
edge lines, ▵φk = φk+1 − φk, and

Here u = ∇I
|∇I|

 is a unit vector in the direction of image gradient at point p, I is the identity 
matrix, and g(x) = exp(− x2

2σ
2 ).

3.1.5.4  OPTIMIZATION

Table 18.1 provides the details of the graph construction; the graph is further partitioned 
based on the max-flow/min-cut algorithm in Boykov and Kolmogorov (2004). As a result, the 
input test image is labeled into foreground and background. Details about the optimization 
can be found in Boykov and Kolmogorov (2004).

3.1.6  Nuclear mask partitioning
After the separation of foreground and background, the next step is to partition potential 

clumps of nuclei. Due to the fact that nuclear shape is typically convex, concavity detection 
and geometric reasoning (Wen et al. 2009) are applied to address the ambiguities associated 
with the delineation of overlapping nuclei. Details can be found in Wen et al. (2009).

3.1.7  Experimental results and discussion

In this section, we (i) discuss parameter setting, and (ii) evaluate performance of the sys-
tem against previous methods.

3.1.7.1  EXPERIMENTAL DESIGN AND PARAMETER SETTING

Our experiment was carried out at 20X, where 20 reference images with size 1k-by-1k pix-
els were manually selected and annotated by an expert to capture the technical variations and 
biological heterogeneities in the target cohort. During nuclear segmentation, only the top M 
= 10 reference images with the highest weight of λ were used as a trade-off between compu-
tational complexity and performance. The number of components for GMM was evaluated 
and selected to be D = 20, while the parameters of GMM were estimated via EM algorithm. 
The other parameter were set at: α = 0.1, β = 10.0, γ = 0.1, w1 = 100, w2 = 100, and σ = 4.0 
(the scale for both seeds detection and LoG feature extraction), where w1 was selected to mini-
mize the seeds detection error on the annotated reference images; σ was determined based 

(18.15)D(p) = g(|∇|) · I + (1 − g(|∇|)) · u · u
T

TABLE 18.1  Edge weights for the graph construction, where N is the neighborhood system, and β is the 
weight for smoothness.

Edge Weight For

p → S Egf (xp = 1) + Elf (xp = 1) p ∈ P

p → T Egf (xp = 0) + Elf (xp = 0) p ∈ P

we(p, q) β·Wk(p) {p, q} ∈ N, φ �pq ∈ {φk , π + φk}
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on the preferred nuclear size at 20X; and all other parameters were selected through cross 
validation.

3.1.7.2  EVALUATION

A two-fold cross validation, with optimized parameter settings, was applied to the refer-
ence images, followed by a comparison of average classification performance between our 
approach, MCV (Kothari et al. 2011), and random forest (Breiman 2001). As summarized in 
Table 18.2, our approach exhibits a superior performance.

The effectiveness of the local probability map is demonstrated with an intuitive example, 
as shown in Figure 18.8, where the characterization of the nuclei with low chromatin content 

TABLE 18.2  Comparison of average classification performance among our approach(MRGC), our previous 
approach (Chang et al., 2011-a), MCV approach in Kothari et al. (2011), and random forest. For MCV, only 
color in RGB space is used, which is identical to Kothari et al. (2011). For random forest, the same features are 
used: {R, G, B, LoG}, and the parameter settings are: ntree = 100, mtry = 2, node = 1.

Approach Precision Recall F-Measure

MRGC-MS (Multi-Scale LoG) 0.77 0.82 0.794

MRGC 0.79 0.78 0.785

MRGC-CF (Color Feature Only) 0.72 0.83 0.771

MRGC-GF (Global Fitness Only) 0.80 0.71 0.752

Our Previous Approach 0.78 0.65 0.709

MCV 0.69 0.75 0.719

Random Forest 0.59 0.76 0.664

(a) (b) (c)

(f)(e)(d)

FIGURE 18.8  A comparison among our approach, MCV, and random forest. (a) Original image patch; (b) detected 
seeds, green: nuclei region; blue: background; (c) local nuclei probability established based on seeds; (d) classification 
by our approach; (e) classification by MCV; (f) classification by random forest. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this book.)
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(shown in the blue bounding boxes) is clearly improved with the help of local probability 
map. Figure 18.9 gives another example for further demonstration of the effectiveness of our 
approach on the segmentation of low chromatin nuclei.

Finally, Table 18.3 gives an object level comparison of the nuclear segmentation perfor-
mance between our previous approach (Chang et al. 2011-a) and our current approach (Chang 
et al. 2011-a). Let,

•	 MaxSize(a, b) be the maximum size of nuclei a and b, 
•	 Overlap(a, b) be the amount of overlap between nuclei, a and b.

(a) (b)

FIGURE 18.9  Segmentation on nuclei with low chromatin patterns. (a) Original image patch; (b) segmentation 
results.
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Subsequently, given any manually annotated nucleus, nG, as ground truth, if there is one 
and only one segmented nucleus, nS, that satisfies Overlap(nG ,nS)

MaxSize(nG ,nS)
> T, then nS is considered to be 

the correct segmentation for nG. In our experiment, the threshold was set to be T = 0.8 
empirically.

3.2  Patch-based analysis

The flip side of morphometric analysis is to quantify composition of each tissue section in 
terms of distinct histopathology, such as tumor or necrosis regions. This allows each nucleus 
can be tracked to its specific compartment. It is our suggestion that, compared to human 
engineered features (Lowe 1999; Dalal and Triggs 2005), unsupervised feature learning is 
more tolerant to batch effect (e.g., technical variations associated with sample preparation) 
and can learn pertinent features without user intervention. In our case, features are learned 
using PSD [74]. It contains both a feed-forward stage (e.g., encoding) and a feed backward 
stage (e.g., decoding), where the decoding step reconstructs the original patch through a 
sparse activation of an over-complete dictionary, and the encoding step efficiently produces 
the sparse code directly from the the original patch. The learned features are then summarized 
utilizing some pooling strategies for improved robustness of the representation, which will 
eventually be used towards the construction of classifier. Figure 18.10 indicates the overall 
recognition framework of our approach.

TABLE 18.3  Comparison of average segmentation performance between our current approach (MRGC), 
and our previous approach (Chang et al. 2011-a), in which precison = #correctly_segmented_nuclei

#segmented_nuclei
, and 

recall = #correctly_segmented_nuclei

#manually_segmented_nuclei
 .

Approach Precision Recall F-Measure

MRGC 0.75 0.85 0.797

Our Previous Approach 0.63 0.75 0.685

FIGURE 18.10  Illustration of recognition framework including the encoder, decoder, and pooling.
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3.2.1  Unsupervised feature learning
Randomly selecting from the cohort, the sparse auto encoder takes a set of vectorized 

image patches, X, as input, with the objective is to constructing a sparse representation, Z, for 
each input, X, with a highly efficient feed forward fashion. Meanwhile, the feedback mecha-
nism minimizes the reconstruction error of the original signal based on an over-complete 
dictionary, D. The objective function is as follows:

where X ∈ R
n, Z ∈ R

k, the dictionary is D ∈ R
n×k, and the encoder is W ∈ R

k×n. The first 
and last terms are for encoding and decoding, respectively, whereas the second term 
denotes the sparse constraint with λ as the weighting parameter for sparsity, i.e., sparsity 
is increased with a higher value of λ.

In our experiment, to achieve the best performance in classification, λ is set to be 0.3 
empirically.

The optimal D, W, and Z are learned through the minimization of F(X), which is iterative 
by fixing one set of parameters while optimizing others and vice versa, i.e., iterate over steps 
(2) and (3) below:

1.	 Randomly initialize D and W.
2.	 Fix D and W and minimize Equation 18.16 with respect to Z, where Z for each input 

vector is estimated via the gradient descent method.
3.	 Fix Z and estimate D and W, then approximate D and W through stochastic gradient 

descent algorithm. This is used to improve the scalability of the optimization, which is 
necessary due to the large scale of training samples.

Figure 18.11 shows a few examples of the dictionary elements, computed from GBM data-
set, which captures color and texture information in the cohort. Generally, this information is  
difficult to obtain using hand engineered features.

3.2.2  Classification
During classification, every image, in the training dataset, is divided into non-overlap-

ping image patches, which are further processed with the feed forward encoding operation, 
Z = WX, followed by the max-pooling strategy upon the sparse codes forming the features 
for training. Here, a multi-class regularized SVM is used for classification with a regulariza-
tion parameter 1 and a polynomial kernel of degree 3.

3.2.3  Evaluation
We opted to curate three classes that correspond to necrosis, transition-to-necrosis, and to 

tumors. The pure necrotic regions are free of DNA contents. However, as an intermediate step 
of the dynamic process of necrosis, transition-to-necrosis regions have punctated or diffused 
DNA contents. Our evaluation involves a dataset containing 1400 images curated from sam-
ples scanned with 20X objective. During unsupervised feature learning, 50 patches of size 25 
× 25 pixels were randomly selected for each image in the dataset. They were down sampled 
by a factor of 2 and normalized in the range of [0, 1] in the color space before being fed into 
the system. The size of the dictionary was set to be 1,000 to achieve the best classification 

(18.16)F(X) = ||WX − Z||2
F + λ||Z||1 + ||DZ − X||2

F
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performance during cross-validation, and the max-pooling strategy was performed on a 4-by-4 
neighboring patch of the learning step. During classification, the total number of necrosis, 
transition-to-necrosis, and tumor patches were 12,000, 8,000, and 16,000, respectively. From, 
amongst those, 4,000 patches per category were randomly selected for training, and another 
4,000 per category were randomly selected for testing. We repeated the classification for 100 
times, and reported the performance in Table 18.4. Figure 18.12 shows an example of the 
reconstruction of a heterogeneous image with the tumor region on the right and transition-to-
necrosis on the left. Based on the dictionary derived above, this indicates that the transition-
to-necrosis region is visually distinguishable from the tumor during reconstruction.

(a)

(b)

FIGURE 18.11  Representative set of computed basis function, D, for (a) the KIRC dataset and (b) the GBM 
dataset.
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Figure 18.13 shows some examples of classification on whole slide tissue sections with size 
20k × 20k pixels. The examples are consistent with the evaluation and annotation from our 
pathologist, and further demonstrate the efficacy of our system.

4  BIOINFORMATICS ANALYSIS

Integrated analysis of tissue histology with the genome-wide array (e.g., OMIC) and clini-
cal data has the potential to generate hypotheses as well as be prognostic. Different from typi-
cal subtyping analysis at patient level (Chang et al. 2011a, 2013b), we focus on subtypes that 
correspond to tumor composition, and evaluate every morphometric index or pairs of mor-
phometric indices that are predictive of the outcome. Meanwhile, indices for morphometric 
heterogeneity are also derived in order to identify the molecular basis of tumor heterogeneity.

4.1  Morphometric summarization and subtyping at the block level
Morphometric summarization and subtyping on tissue patches provide a way for tissue 

compositional analysis. In this study, each tissue section is decomposed into non-overlapping 
patches (blocks) of 1k × 1k pixels. Distributions of each computed morphometric index are then 

TABLE 18.4  Confusion matrix for classifying three different morphometric signatures in GBM.

Tissue type Necrosis Tumor Transition to necrosis

Necrosis 77.6 7.7 14.6

Tumor 0.5 93.3 6.0

Transition to Necrosis 10.9 6.3 82.8

(a) (b)

FIGURE 18.12  (a) A heterogeneous tissue section with transition to necrosis on the left and tumor on the right, 
and (b) its reconstruction after encoding and decoding.
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constructed per block and normalized across all tissues within the same tumor type, thereby 
enabling morphometric subtyping at block level for a given tumor type as well as  subsequent 
survival and compositional analysis. However, prior to the analyses, several problems will first 
need to be solved: (i) undesired effects on subtyping caused by background/border blocks in 
the tissue section; (ii) extremely large number of blocks per tissue section, e.g., 2500; (iii) imbal-
anced number of blocks per tissue section due to the variation of tissue size. To address the 
issues above, a computational pipeline with four major steps has been developed: 

1.	 Block filtering: Any blocks containing background regions, where the background is 
detected at low resolution of the tissue section, are removed from subsequent analysis.

2.	 Block Sampling: Representative blocks for each tissue section are identified and selected as 
the centroids of the morphometric clusters, then they are computed through a k-means 
algorithm on all the blocks within the tissue section. As a result, the number of selected 
blocks is the same as the number of clusters, k, which is set to be proportional to the total 
number of blocks in the tissue section (e.g., 1%).

3.	 Block Clustering: Consensus clustering (Monti et al. 2003) is performed on representative 
blocks across different tissue sections for the identification of subtypes of a given tumor 
type, where the derived subtypes are further refined by removing the outliers through 

(a)

(b)

FIGURE 18.13  Two examples of classification results of a heterogeneous GBM tissue sections. The left and right 
images correspond to the original and classification results, respectively. Color coding is black (tumor), pink (necro-
sis), and green (transition to necrosis). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this book.)
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the silhouette analysis (Rousseeuw 1987; R. V. et al. 2010). Eventually, the refined sub-
types and their corresponding blocks are used to construct a classifier for block labeling.

4.	 Block labeling: Each non-representative block is assigned to a subtype through the 
nearest-neighbor classifier, which built from previous step.

4.2  Integrated analysis at the patient level
The block level subtyping, which enables a compositional representation for each patient, 

indicates the percentage of each subtype (i.e. the percentage of the blocks belonging to each 
subtype) at the patient level. Subsequently, this allows each subtype to be correlated with 
genomic data or clinical covariates for integrated analysis. In the field of multivariate survival 
analysis, one possible way to explore the relationship between the compositional covariates 
and survival distribution is to utilize the following parametric model (Fox 2002):

where h(t) is the hazard function, Xi(i ∈ [1, k]) are the covariates, and α is a constant repre-
senting the log-baseline hazard. Without specifying the baseline hazard function α(t) = log 
h0(t), the following Cox proportional hazards (PH) model can be estimated by the partial 
likelihood method,

To further explore the relationship between compositional covariates and survival distri-
bution in the presence of important clinical covariates (e.g., age at initial pathologic diagno-
sis), the Cox PH model can be rewritten as:

Here,  Ci is the percentage of the ith subtype derived at the patient level. Due to the linear cor-
relation among all the compositional covariates, 

∑N

i=1Ci = 1, only N − 1 of them are included 
in the model. From amongst these, the ones with small p-values (those under a certain thresh-
old) are identified as statistically significant predictors of survival distribution.

Consequently, the identified histological predictor can now be used to infer the best cor-
related molecular candidates through correlation analysis. To this end, we adopted Pearson’s 
product-moment correlation coefficient for this study. The significance of computed correla-
tion between the histological predictor and expression values of each probe set for all avail-
able patients were  further assessed by a two-tailed t-test with n-2 degrees of freedom (n is the 
number of patients), where p-values for all probe sets were computed and corrected for mul-
tiple testing using a false discovery rate (FDR) Hochberg 1995.

4.3  Clustering results
Our representation for each block is a concatenated vector, from two 25-bin equal prob-

ability histograms, for nuclear size and cellularity, respectively. During the block filtering 

(18.17)h (t) = exp(α + β1X1 + β2X2 + · · · + βkXk)

(18.18)h (t) = h0(t) exp(β1X1 + β2X2 + · · · + βkXk)

(18.19)h (t) = h0(t) exp(β1C1 + β2C2 + · · · + βN−1CN−1 + βNAge)
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step, a total of 162,510 tissue blocks (non-background/non-border) were identified, among 
which 1,582 representative ones were selected for consensus clustering. In the consensus clus-
tering step, the k-means algorithm, with squared Euclidean distance as the distance metric, 
was repeated for 200 iterations with a sampling rate of 0.8. As shown in Figures 18.14 and 
18.15, respectively, the  derived consensus matrix and CDFs (cumulative density function) 

FIGURE 18.14  Consensus clustering matrix of 146 TCGA patients with GBM for cluster number N = 2 to N = 5.
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FIGURE 18.15  Consensus clustering CDF for cluster number N = 2 to N = 8.
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FIGURE 18.17  Representative blocks for each morphometric subtype. Each block is of 1000-by-1000 pixels at  
20× resolution.

FIGURE 18.16  Average equal-bin-width histograms of cellularity and nuclear size for each block-level subtype 
(N = 4).
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reveal four robust clusters (clustering stability significantly decrease for N > 4). Among all 
the representative blocks in the four subtypes (clusters) identified above, 1535 of them with 
positive silhouette value were retained as training samples for the construction of classifier. 
The average equal-bin-width histograms for each base block, from each subtype, are shown 
in Figure 18.16. Figure 18.17 gives examples of representative blocks from each one of the 
four subtypes, which exhibit significantly different signatures in cellularity (i.e., subtypes 1 to 
4 correspond to extremely low, mid and high cellularity, respectively) and nuclear size (i.e., 
subtypes 1 to 4 exhibits a monotonically increasing trend in nuclear size).

4.4  Survival analysis and genomic association
Block labeling leads to a compositional representation at patient level, indicating the per-

centage of each subtype per patient. In the presence of age, the relationship between the 
patient level tumor composition and survival distribution, is then modeled as independent 
prognostic factors in Equation 18.19.

The implementation of survival analysis is based on the R survival package. Due to the linear 
dependence among all four compositional covariates, as mentioned in Section 4.2, we evaluate all 
possible combinations of the three covariates for survival analysis. The results, summarized in 
Table 18.5, indicates that both age and C1 (Subtype1 composition) have consistently high hazard 
ratio with p-values < 0.1 (i.e., these covariates are negatively correlated with survival). As shown 
in Figures 18.16 and 18.17, subtype1 reveals a necrotic-like signature of small nuclear size and 
extremely low cellularity. Consistent with previous literature, this result indicates a negative cor-
relation between the extent of necrosis and survival in GBM (Pierallini et al. 1998). Figure 18.18 
shows a heat map of 48 probe sets that are significantly correlated with the subtype1 composition, 
with FDR adjusted p-value < 0.02. These probe sets  were mapped into genes for further analysis.

Pathway and subnetwork enrichment analysis (see Figure 18.19) are then performed on 
the identified genes determined to have a significant correlation to the subtype1 composition. 
Pathway enrichment revealed STAT3, which is known to be a master regulator in GBM (Liu 
et  al. 2010; Rahman et  al. 2002), while the subnetwork enrichment identified AGT, PKC, 
PDGF, CEBPA, and TNF as the major hubs.

Temozolomide (TMZ), as a part of treatment for the patients in this cohort, interferes with 
DNA replication through methylation. However, some tumor cells are able to 

TABLE 18.5  Multivariate survival analysis results by fitting the Cox PH model.

Covariates in the Cox PH model
C1  +  C2  +  C3  +  Age C1  +  C2  +  C4  +  Age C1  +  C3  +  C4  +  Age C2  +  C3  +  C4  +  Age
Hazard ratio p-value Hazard ratio p-value Hazard ratio p-value Hazard ratio p-value

C1 1.0184 0.0652 1.0168 0.0856 1.030 0.0631 NA NA

C2 0.9885 0.2342 0.9869 0.2771 NA NA 0.9706 0.0631

C3 1.0016 0.7303 NA NA 1.013 0.2771 0.9834 0.0856

C4 NA NA 0.9984 0.7303 1.012 0.2342 0.9819 0.0652

Age 1.0283 7.37e-5 1.0283 7.37e-5 1.028 7.37e-5 1.0283 7.37e-5
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repair the damage through the expression of AGT. In GBM, AGT maintains normal function 
of vasculature (Kakinuma et al. 1997), and cellular concentration of AGT enzyme is a primary 
determinant of the cytotoxicity of TMZ (Stupp et al. 2001) in vitro. Whereas PKC (Protein 
Kinase C) is well established in cancer signaling and therapy, as it is involved in proliferation, 

FIGURE 18.19  Subnetwork enrichment analysis for Subtype 1 reveals AGT, PDGF, PKC, TNF, and CEBPA as 
dominant regulators with p-value of less than 0.05.

Subtype1 compositionLow High

negetive
correlation

positive
correlation

FIGURE 18.18  Heatmap of top 48 probesets (rows) that best correlate with the subtype1 composition, with FDR 
adjusted p-value < 0.02.
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migration, and malignant transformation (Kazanietz 2010), and its isozyme has been sug-
gested for chemotherapeutic targets in GBM (Martin and JHussanini 2005). TNF, on the other 
hand, refers to a group of cytokines that induce proliferation, inflammation, and apoptosis, 
depending upon the adaptor proteins. TNF is part of the anti-tumor strategy in which human 
glioma cell lines express its proteins. Manipulation of these proteins has shown to induce 
apoptosis in glioma cells (Chen et al. 1997). Other hubs are highly ranked in the TCGA gene 
tracker.

5  COMPUTATIONAL PIPELINE

The significance of our computational pipeline is its capacity of large-scale data analysis, 
which meets the TCGA requirements on data processing. As shown in Figure 18.20, the pipe-
line has the following four components: (I) consistency maintaining between the local and 
remote registries, (II) tissue section visualization, (III) data processing and feature importing, 
and (IV) data summarization through normalization. Details of each component are as follows:

I.	 Consistency of images between a local registry and TCGA registry (at the National 
Cancer Institute (NCI))  is constantly maintained. Images newly imported into  
TCGA's registry are synchronized with the local registry for processing. At present, 

FIGURE 18.20  Computational pipeline consists of four modules: downloads images from the NIH repository. 
Each image is partitioned into strips of (1k-by-number of columns), stored in the OMEIS image server. Each strip is 
partitioned into blocks of 1k-by-1k pixels, where each block is submitted to one of the two clusters at Berkeley lab. 
Computed representations are then imported into a PostgreSQL database.
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both frozen sections and those from paraffin embedded blocks are provided; both 
types of images are registered and displayed through our system, but only paraffin 
embedded blocks are analyzed. Each image is partitioned and stored as strips of 
1k-by-number of columns on the OME image server (Goldberg et al. 2005; Parvin 
et al. 2000).

II.	 Visualization of each whole mount tissue section is provided with a GoogleMaps™-like 
interface, which is realized through tiling and the utilization of Flash technology. Prior 
to visualization, each tissue section is partitioned and stored as tiles of 256-by-256 pixels 
at various resolutions. When a user interaction (e.g., drag and zoom) with the interface 
in an effort to view  the tissue section in a browser, the required tiles are immediately 
downloaded from the server and assembled for display. All data and images are pub-
licly available on the following website: http://tcga.lbl.gov.

III.	During data processing, each strip is partitioned into 1k-by-1k blocks, and submitted 
for cluster computing, where the block size is optimized with respect to processing 
time and wait time in the queue. Currently, it takes four days to process the entire 
GBM data set, which consists of  344 tissue sections. To further reduce the computa-
tional cost, a multithread implementation of the computational methods has been 
developed to utilize the multiple CPU cores of each node in the cluster. After process-
ing, extracted features are then imported back into BioSig (Han et al. 2010; Monti et al. 
2003), an imaging bioinformatics system, for (1) quality control by overlaying original 
image with the representation (e.g., nuclear segmentation) and (2) further bioinformat-
ics analysis.

IV.	The feature representation summarization is performed through procedural program-
ming. BioSig is built upon PostgreSQL (PG), which enables the transparent transforma-
tion of SQL queries, through its server programming interface (SPI), for high 
performance applications. As a critical component, it increases the flexibility for feature 
manipulation, and bioinformatics analysis, which directly leads to an increased produc-
tivity by saving the reprocessing step when alternative representations need to be tested. 
For a specific tumor type (GBM in our case), each computed feature (e.g., nuclear size, 
cellularity, texture) is normalized through the following four steps before further 
analysis is conducted (e.g., subtyping, genomic association): (i) construct a density 
distribution for each feature per tissue; (ii) construct a global distribution for each 
feature per tumor type by combining all the feature distributions per tissue within the 
same tumor type; (iii) Re-bin the global distribution so that each bin has a similar 
population of cells of a given feature value; and (iv) Re-map the local density distribu-
tions to computed global bins of equal weight. All the steps above are implemented 
through SPI, and it enables the comparison of morphometric factor, in context, through 
its distribution function, which further improves the computational efficiency by 
avoiding classical clustering operations on an extremely large number of cells in the 
tissue section. When there are multiple tissue sections per patient, an average distribu-
tion is computed and archived. Furthermore, all of the data, for each tissue section, are 
downloadable and is visualizable.
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6  CONCLUSION

This chapter introduced the concept of tumor heterogeneity in the context of nuclear mor-
phology and organization. However, nuclear morphology is a complex segmentation problem 
subject to batch effect and biological variations. We proposed a dictionary based approach 
that captures intrinsic diversities in tumor signature for nuclear segmentation. Consequently, 
subtyping based on cellularity (e.g., rate of proliferation) was shown to be one of the better 
morphometric indices that correlate with the outcome. By performing subtyping, at the block 
level instead of a cohort of while slide images, we were able to identify four clusters that ulti-
mately form the basis of representation for each histology section. Additionally, the molecu-
lar correlates of morphometric subtypes revealed molecular markers that are consistent with 
the literature for targeted therapy. The end result of the realization of one of the concepts in 
pathway pathology for revealing outcome based on computed morphometric indices and 
molecular correlates of computed indices. 
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