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ABSTRACT

Classification of histology sections from large cohorts, in terms of
distinct regions of microanatomy (e.g., tumor, stroma, normal), en-
ables the quantification of tumor composition, and the construction
of predictive models of the clinical outcome. To tackle the batch
effects and biological heterogeneities that are persistent in large co-
horts, sparse cellular morphometric context has recently been de-
veloped for invariant representation of the underlying properties in
the data, which summarizes cellular morphometric features at vari-
ous locations and scales, and leads to a system with superior perfor-
mance for classification of microanatomy and histopathology. How-
ever, the sparse optimization protocol for the calculation of sparse
cellular morphometric features is not scalable for large scale classi-
fication. To improve the scalability of systems, based on sparse mor-
phometric context, we propose the predictive sparse morphometric
context in place of the original implementation, which approximates
the sparse cellular morphometric feature through a non-linear re-
gressor that is jointly learned with an over-complete dictionary in an
unsupervised manner. Experimental results indicates over 50 times
speedup compared to our previous implementation with the help of
non-linear regressor; while producing competitive performance.

Index Terms— Classification, Sparse Coding, H&E Tissue Sec-
tion

1. INTRODUCTION

Tumor histology provides a detailed insight into cellular morphol-
ogy, organization, and heterogeneity. For example, histology sec-
tions can be used to identify mitotic cells, cellular aneuploidy, and
autoimmune responses. More importantly, if tumor morphology and
architecture can be quantified in a large cohort, it will provide the
basis for predictive models in a similar way that genomic techniques
have identified predictive molecular subtypes.

The main barriers for tissue histology classification resides in
two-folds: 1) Extremely large scale of data. Typically, for a sin-
gle tumor type, there are hundreds of whole mount tissue sections,
with size up to 100,000×100,000 pixels, which leads to hundreds of
thousands of tissue blocks after decomposition (e.g., split the whole
mount tissue sections into blocks with fixed size, such as 1000-by-
1000 pixels). 2) Extremely large amount of variations in the data,
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which are due to sample preparation (e.g., fixation, staining) and bi-
ological heterogeneities (e.g., cell type, cell state) across histological
tissue sections, especially when these tissue sections are processed
and scanned at different laboratories.

Therefore, tissue histology classification shares the same threads
with pattern recognition and big data in computer vision. Although,
the work in [1] provides a good handler to variations in the data
based on the sparse cellular morphometric context, the scalability is
still an bottleneck due to the sparse optimization during feature ex-
traction. In this paper, we propose the predictive sparse morphome-
tric context, which approximates the sparse cellular morphometric
feature through a non-linear regressor that is jointly learned with an
over-complete dictionary in an unsupervised manner. And we show
that our proposed approach achieves competitive results compared
to [1], with significantly improved efficiency.

Organization of this paper is as follows: Section 2 reviews re-
lated works. Section 3 describes the proposed approach. Section 4
elaborates the details of our experimental setup, followed by a de-
tailed discussion on the experimental results. Lastly, section 5 con-
cludes the paper.

2. RELATED WORK

Several outstanding reviews for the histology sections analysis can
be found in [2, 3]. From our perspective, four distinct works have
defined the trends in tissue histology analysis: (i) one group of re-
searchers proposed nuclear segmentation and organization for tumor
grading and/or the prediction of tumor recurrence [4, 5, 6, 7, 8]. (ii)
A second group of researchers focused on patch level analysis (e.g.,
small regions) based on either human engineered features [9, 10]
or features from unsupervised learning [11, 12, 13], for tumor rep-
resentation. (iii) A third group focused on block-level analysis to
distinguish different states of tissue development using cell-graph
representation [14, 15]. (iv) Finally, a fourth group has suggested
detection and representation of the auto-immune response as a prog-
nostic tool for cancer [16].

Most recently, sparse morphometric context [1] has been devel-
oped for tissue histology classification with great success. It incor-
porates the sparse cellular morphometric features within the spa-
tial pyramid matching (SPM [17]) framework to capture the cellu-
lar morphometric context for invariant representation of the under-
lying properties in the data. Most importantly, the authors in [1]
have demonstrated that system built upon sparse morphometric con-
text is invariant to segmentation strategies, and extensible to differ-
ent tumor types. However, this approach suffers from the sparse
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Fig. 1. Schematic comparison of the original sparse morphometric
linear SPM (SMLSPM) with our proposed predictive sparse mor-
phometric nonlinear SPM (PSMKSPM).

optimization involved in sparse cellular morphometric feature calcu-
lation, which makes it impractical for tasks with hundreds of thou-
sands of tissue sections.

In the context of machine learning research on sparse coding,
predictive sparse decomposition (PSD) [18] has been proposed for
fast inference of sparse features through a non-linear regressor au-
tomatically constructed during dictionary learning. This approach
has been demonstrated to be very efficient and effective through its
applications to visual object recognition tasks [18].

3. APPROACH - PREDICTIVE SPARSE MORPHOMETRIC
KERNEL SPM (PSMKSPM)

The workflow of our approach is shown in Figure 1(b), where PSD
is employed for the fast inference of sparse cellular morphometric
features. Detailed steps of our approach can be found as follows,

1. Build sparse auto encoder (W). Given Y = [y1, ...,yN ] ∈
Rm×N as a set of cellular morphometric descriptors extracted
based on nuclear segmentation, we formulate the PSD opti-
mization problem as:

min
B,X,G,W

∥Y −BX∥2F + λ∥X∥1 + ∥X−Gσ(WY)∥2F

s.t. ∥bi∥22 = 1, ∀i = 1, . . . , h (1)

where B = [b1, ...,bh] ∈ Rm×h is a set of the basis func-
tions; X = [x1, ...,xN ] ∈ Rh×N is the sparse feature ma-
trix; W ∈ Rh×m is the auto-encoder; σ(·) is the element-
wise sigmoid function; G = diag(g1, . . . , gh) ∈ Rh×h is
a scaling matrix with diag being an operator aligning vec-
tor, [g1, . . . , gh], along the diagonal; and λ is a regularization
constant. Joint minimization of Eqn. (1) w.r.t the quadruple
⟨B,X,G,W⟩, enforces the inference of the nonlinear re-
gressor Gσ(WY) to be similar to the optimal sparse codes,
X, which can reconstruct Y over B [18]. As shown in Al-
gorithm 1, optimization of Eq. (1) is iterative, where the it
terminates when either the objective function is below a pre-
set threshold or the maximum number of iterations has been
reached.

Algorithm 1 Construction of Sparse Auto Encoder: W

Input: Training set Y = [y1, ...,yN ] ∈ Rm×N

Output: Sparse auto encoder W ∈ Rh×m

1: Initialize: Randomly initialize B, W, and G
2: repeat
3: Fixing B, W and G, minimize Eq. (1) w.r.t X, where X

can be either solved as a ℓ1-minimization problem [19] or
equivalently solved by greedy algorithms, e.g., Orthogonal
Matching Pursuit (OMP) [20].

4: Fixing B, W and X, solve for G, which is a simple least-
square problem with analytic solution.

5: Fixing X and G, update B and W, respectively, using the
stochastic gradient descent algorithm.

6: until Convergence (maximum iterations reached or objective
function ≤ threshold)

2. Build dictionary (D) of sparse cellular morphometric types,
where D = [d1, ...,dK ]⊤ are the K sparse cellular morpho-
metric types to be learned by the following optimization:

min
D,Z

M∑
m=1

||xm − zmD||2 (2)

subject to card(zm) = 1, |zm| = 1, zm ≽ 0, ∀m

where X = [x1, ...,xM ]⊤ is a set of sparse codes gener-
ated through the nonlinear regressor (X = Gσ(WY));
Z = [z1, ..., zM ]⊤ indicates the assignment of the feature
type, card(zm) is a cardinality constraint enforcing only one
nonzero element of zm, zm ≽ 0 is a non-negative constraint
on the elements of zm, and |zm| is the ℓ1-norm of zm. Dur-
ing training, Equation 2 is optimized w.r.t both Z and D;
In the coding phase, for a new set of X, the learned D is
applied, and Equation 2 is optimized w.r.t Z only.

3. Build spatial pyramid representation [17] for the characteri-
zation of sparse morphometric context, which is a concatena-
tion of histograms of sparse cellular morphometric types at
different scales and locations.

4. Build multi-class linear SVM for classification [21]. In this
step, a homogenous kernel map was applied [22] to approxi-
mate the χ2 kernel prior to the construction of linear classifier
due to fact that χ2 kernel is one of the most suitable kernels
for histogram representations as suggested in [23].

4. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental comparison with the previous state-of-art (SML-
SPM) was carried out on both (i) Glioblastoma Multiforme (GBM)
and (ii) Kidney Renal Clear Cell Carcinoma (KIRC) datasets, which
contain images (mostly 1000 × 1000 pixels) curated from TCGA 1

whole slide tissue sections, scanned with 20X objective (0.502 mi-
cron/pixel) and 40X objective (0.252 micron/pixel), respectively.
Examples of GBM and KIRC datasets are shown in Figure 2 and
Figure 3, respectively, and more details about these two datasets can
be found in [1]. The implementation details of PSMKSPM are listed
as follows,

1. Cellular morphometric features (same as listed in Table 2
in [1]) were extracted via MRGC [8] and normalized inde-
pendently with zero mean and unit variance;

1http://cancergenome.nih.gov/
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Fig. 2. GBM Examples. First column: Tumor; Second column:
Transition to necrosis; Third column: Necrosis.

Fig. 3. KIRC examples. First column: Tumor; Second column:
Normal; Third column: Stromal.

2. The number of basis functions (B) was fixed to be 128, and
the SPAMS optimization toolbox [24] was adopted for effi-
cient implementation of OMP to compute the sparse code,
X, with sparsity prior set to 30;

3. The level of pyramid was fixed to be 3;
4. Linear SVM was used for classification.

For fair comparison, we follow the experimental setup as in [1],
where all the evaluations were repeated 10 times with randomly se-
lected training/testing images, and the final results were reported as
the mean and standard deviation of the classification rates. The de-
tailed comparisons are shown in Table 1 and Table 2, respectively,
where the results on SMLSPM were directly cited from [1].

4.1. Discussion

1. PSMKSPM is competitive with SMLSPM in terms of per-
formance. As shown in Tables 1 and 2, the performance of
the proposed approach (PSMKSPM) is competitive with the
performance of SMLSPM on both GBM and KIRC datasets,
with various configurations.

2. PSMKSPM is superior to SMLSPM in terms of scalabil-
ity. During sparse cellular feature calculation, PSMKSPM
involves only element-wise nonlinearity and matrix multipli-
cation, as a result, it is much more efficient than SMLSPM,
which needs further optimization. Table 3 gives an intu-
itive example, showing the significant speed-up achieved by
PSMKSPM.

Dataset GBM KIRC
Average #cells/image 606 302
SMLSPM (sec/image) 2.6 2.0
PSMKSPM (sec/image) 0.05 0.03
Speed-Up 52X 66X

Table 3. Comparison of computational time for sparse cellular
morphometric feature extraction on both GBM and KIRC datasets,
where the dictionary size for both SMLSPM and PSMKSPM were
fixed to be 256.

5. CONCLUSIONS

In this paper, we proposed a spatial pyramid matching approach
based on predictive sparse cellular morphometric feature, for tissue
histology classification. By utilizing non-linear regressor, jointly
learned with an over-complete dictionary in an unsupervised man-
ner, for the inference of sparse cellular morphometric features, the
proposed approach achieves significant speed up compared to the
state-of-art [1], without loss of performance. As a result, it enables
the automatic analysis of extremely large histological dataset in an
efficient and effective way. Our future work will focus on process-
ing entire tumor banks for the construction of predictive models of
clinical outcome.
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