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Abstract Image-based classification of histology sections,
in terms of distinct components (e.g., tumor, stroma, normal),
provides a series of indices for histology composition (e.g.,
the percentage of each distinct components in histology sec-
tions), and enables the study of nuclear properties within
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each component. Furthermore, the study of these indices,
constructed from each whole slide image in a large cohort,
has the potential to provide predictive models of clinical out-
come. For example, correlations can be established between
the constructed indices and the patients’ survival informa-
tion at cohort level, which is a fundamental step towards
personalized medicine. However, performance of the exist-
ing techniques is hindered as a result of large technical varia-
tions (e.g., variations of color/textures in tissue images due to
non-standard experimental protocols) and biological hetero-
geneities (e.g., cell type, cell state) that are always present in a
large cohort.We propose a system that automatically learns a
series of dictionary elements for representing the underlying
spatial distribution using stacked predictive sparse decompo-
sition. The learned representation is then fed into the spatial
pyramid matching framework with a linear support vector
machine classifier. The system has been evaluated for classi-
fication of distinct histological components for two cohorts
of tumor types. Throughput has been increased by using
of graphical processing unit (GPU), and evaluation indi-
cates a superior performance results, comparedwith previous
research.

Keywords Tissue histology · Classification · Sparse
coding · Unsupervised feature learning

1 Introduction

Tumor histology provides detailed insight into cellular mor-
phology, organization, and heterogeneity. For example, his-
tology sections can be used to identify mitotic cells, cellular
aneuploidy, and autoimmune responses. More importantly,
if tumor morphology and architecture can be quantified in
a large cohort, it will provide the basis for predictive mod-
els in a similar way that genomic techniques have identified
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predictive molecular subtypes. Genome analysis techniques
(e.g., microarray analysis) have the advantages of standard-
ized tools for data analysis and pathway enrichment, which
enables hypothesis generation for the underlyingmechanism.
On the other hand, histological signatures are hard to com-
pute because phenotypic signatures are not standardized and
advanced methods for image analysis remain at a deficit.
Image analysis is further complicated by technical variations
as a result of sample preparation (e.g., fixation, staining) and
biological heterogeneity, where the latter can originate both
within a whole slide image (WSI) and between WSIs of dif-
ferent patients with the same aberrant signature. These vari-
ations are manifested in terms of wide swings in the tex-
ture, color, and intensity of the histology sections at multiple
scales. If morphometric indices can be successfully com-
puted then they can be linked with clinical and genomic data
for building predictive models Chang et al. (2013c).

One of the main technical barriers for processing a large
collection of histological data is the diverse phenotypic sig-
nature, which is shared by the object recognition problem
in computer vision, i.e., the number of different ways that
a sitting chair can be manufactured. In this case of histol-
ogy sections, the diversity in the aberrant signatures is ren-
dered by technical variations (e.g., fixation, staining, uncal-
ibrated imaging system), and biological heterogeneity as
no two patients have the same signature. Biological het-
erogeneity can be as a result of the (i) protein macromole-
cules that are being secreted into the immediate environ-
ment; thus, altering color composition, (ii) tumor being at
a specific temporal states at the time of sample collection.
The latter has a tremendous impact on the tumor composi-
tion that ranges from cellular density, cell death, and immune
response.

In this paper, we aim to classify components of each his-
tology section in terms of distinct phenotypes (e.g., tumor,
stroma, necrosis), which is disease specific. We show that,
compared with human engineered features, unsupervised
feature learning is more tolerant to batch effect (e.g., tech-
nical variations associated with sample preparation) and
can learn pertinent features without user intervention. The
key concept is that stacked predictive sparse decomposi-
tion (PSD) Kavukcuoglu et al. (2008) can elucidate a supe-
rior representation that captures intrinsic phenotypic signa-
ture. When this representation is coupled with spatial pyra-
mid matching (SPM) Lazebnik et al. (2006), which utilizes
sparse tissue morphometric signatures at various locations
and scales, an improved classification performance is real-
ized.

Organization of this paper is as follows: Sect. 2 reviews
related works. Section 3 describes the details of our proposed
approach. Section 4 elaborates the details of our experimental
setup, followed by a detailed discussion (as in Sect. 5) on the
experimental results. Lastly, Sect. 6 concludes the paper.

2 Related Work

Several outstanding reviews for the analysis of histology sec-
tions can be found in Demir and Yener (2009); Gurcan et
al. (2009). From our perspective, four distinct works have
defined the trends in tissue histology analysis: (i) one group
of researchers proposed nuclear segmentation, classification,
and organization for tumor grading and/or the prediction of
tumor recurrence Axelrod et al. (2008); Datar et al. (2008);
Basavanhally et al. (2009); Doyle et al. (2011); Chang et al.
(2013c). It is worth to mention that deepmax-pooling convo-
lutional neural networks has been used to detect mitotic cells
in in breast histology images Ciresan et al. (2013) with a sig-
nificant success. (ii) A second group of researchers focused
on patch level analysis (e.g., small regions) Bhagavatula et
al. (2010); Kong et al. (2010); Han et al. (2011); Cruz-Roa et
al. (2013) for tumor representation, among which, Cruz-Roa
et al. (2013) utilized deep learning for the detection of basal-
cell carcinoma. (iii) A third group focused on block-level
analysis to distinguish different states of tissue development
using cell-graph representation Acar et al. (2012); Bilgin et
al. (2012). (iv) Finally, a fourth group has suggested detec-
tion and representation of the auto-immune response as a
prognostic tool for cancer Fatakdawala et al. (2010).

The major challenge for tissue classification is the large
amounts of technical variations andbiological heterogeneities
preserved in large scale dataset Kothari et al. (2012), which
shares the same threads with object recognition and big data
in computer vision. To overcome this problem, recent stud-
ies have focused on either fine tuning human engineered fea-
tures Bhagavatula et al. (2010); Kong et al. (2010); Kothari
et al. (2012), or applying automatic feature learning Huang
et al. (2011) for robust representation.

In the context of computer vision research on image
categorization, the traditional bag of features (BoF) model
has been widely studied and improved through different
variations Bosch et al. (2008); Boiman et al. (2008); Elad
and Aharon (2006); Moosmann et al. (2006); Lazebnik et
al. (2006), among which SPM Lazebnik et al. (2006) has
clearly become the major component of the state-of-art sys-
temsEveringhamet al. (2012) for its effectiveness in practice.

To a large degree, applications of deep learning for classi-
fication of histology sections have been driven by advances
in machine learning and computer vision literature. The evo-
lution of our research in patch level analysis has been SIFT-
like feature extraction followed by an evaluation of several
kernel-based classification policies Han et al. (2011); inde-
pendent subspace analysis that utilizes unsupervised learn-
ing without the constraint of being able to reconstruct the
original signal Le et al. (2012); a single layer predictive
sparse coding with support vector machine (SVM) classi-
fier Nayak et al. (2013); andmore recently, coupling of either
prior knowledgeChang et al. (2013a) or unsupervised feature
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Fig. 1 Computational workflow of our approach (PSDnSPM), where
X is a set of vectorized image patches, randomly selected from input
tissue images; Zk is a set of sparse codes from the kth layer; and the

final representation of each tissue image is the summarization of sparse
codes, from the last layer, through spatial pyramid kernels

learning Chang et al. (2013b); Zhou et al. (2014), with spa-
tial pyramid matching. The current research builds on these
results to render an unsupervised feature learning approach
with superior performance.

In summary, motivated by the fact that (i) pathologists
often use “context” to assess the disease state, (ii) SPM par-
tially captures context Lazebnik et al. (2006); Kavukcuoglu
et al. (2008), and (iii) unsupervised feature learning is prefer-
able to capture the variance in large cohorts, we have, for the
first time, combined hierarchical unsupervised feature learn-
ing with SPM framework for the classification of histology
sections, which enables (1) automatic discovery of intrinsic
patterns from large histology tissue cohort via hierarchical
unsupervised feature learning; and (2) effective representa-
tion of tissue morphometric context through spatial pyramid
feature pooling. As a result, our approach leads to superior
performance for tissue classification on large scale cohorts,
across different tumor types.

3 Approach

The Proposed approach (PSDnSPM) utilizes predictive
sparse decomposition (PSD) Kavukcuoglu et al. (2008) as
a building block for the purpose of constructing hierarchi-
cal learning framework, which is suggested to be able to
capture higher-level dependencies of input variables, thereby
improving the ability of the system to capture underlying reg-
ularities in the data Ranzato et al. (2008) . Unlikemany unsu-
pervised feature learning algorithms Lee et al. (2006, 2007);
Poultney et al. (2006); Yu et al. (2009), the feed-forward
feature inference of PSD is very efficient, as it involves
only element-wise nonlinearity and matrix multiplication.
For classification, the predicted sparse features are used in a
similar fashion as SIFT features in the traditional framework
of SPM, as shown in Fig. 1.

3.1 Unsupervised Feature Learning

GivenX = [x1, ..., xN ] ∈ R
m×N as a set of vectorized image

patches, we formulate the PSD optimization problem in three
different ways:

3.1.1 PSD with Linear Regressor (LR-PSD)

The formulation of PSD with linear regressor is as follows,

min
B,Z,W

‖X − BZ‖2F + λ‖Z‖1 + ‖Z − WX‖2F
s.t. ‖bi‖22 = 1,∀i = 1, . . . , h (1)

where B = [b1, ...,bh] ∈ R
m×h is a set of the dictionary

elements; Z = [z1, ..., zN ] ∈ R
h×N is the sparse feature

matrix; W ∈ R
h×m is the auto-encoder; and λ is a regular-

ization constant. Joint minimization of Eq. (1) with respect
to the triple 〈B,Z,W〉, enforces the inference of the linear
regressor WX to be similar to the optimal sparse codes, Z,
which can reconstruct X over B Kavukcuoglu et al. (2008).

As shown below, optimization of Eq. (1) is iterative, where
the algorithm terminates when either the objective function
is below a preset threshold or the maximum number of iter-
ations has been reached.

1. Randomly initialize B, and W.
2. Fixing B, and W, minimize Eq. (1) with respect to

Z, where Z can be either solved as a �1-minimization
problem Lee et al. (2006) or equivalently solved by
greedy algorithms, e.g., Orthogonal Matching Pursuit
(OMP) Tropp and Gilbert (2007).

3. Fixing Z, update B and W, respectively, using the sto-
chastic gradient descent algorithm.

4. Repeat [2]–[3] until stopping condition is satisfied.

3.1.2 PSD with Nonlinear Regressor (NR-PSD)

The formulation of PSD with nonlinear regressor is as fol-
lows,

min
B,Z,G,W

‖X − BZ‖2F + λ‖Z‖1 + ‖Z − Gσ(WX)‖2F
s.t. ‖bi‖22 = 1,∀i = 1, . . . , h (2)

whereB = [b1, ...,bh] ∈ R
m×h is a set of the dictionary ele-

ments;Z = [z1, ..., zN ] ∈ R
h×N is the sparse featurematrix;

W ∈ R
h×m is the auto-encoder; G = diag(g1, . . . , gh) ∈

R
h×h is a scaling matrix with diag being an operator aligning
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vector, [g1, . . . , gh], along the diagonal; σ(·) is the element-
wise sigmoid function; and λ is a regularization constant.
Joint minimization of Eq. (2) with respect to the quadruple
〈B,Z,G,W〉, enforces the inference of the nonlinear regres-
sor Gσ(WX) to be similar to the optimal sparse codes, Z,
which can reconstruct X over B Kavukcuoglu et al. (2008).

As shown below, optimization of Eq. (2) is iterative, where
the algorithm terminates when either the objective function
is below a preset threshold or the maximum number of iter-
ations has been reached.

1. Randomly initialize B,W, and G.
2. Fixing B,W and G, minimize Eq. (2) with respect to

Z, where Z can be either solved as a �1-minimization
problem Lee et al. (2006) or equivalently solved by
greedy algorithms, e.g., Orthogonal Matching Pursuit
(OMP) Tropp and Gilbert (2007).

3. Fixing B,W and Z, solve for G, which is a simple least-
square problem with analytic solution.

4. Fixing Z and G, update B andW, respectively, using the
stochastic gradient descent algorithm.

5. Repeat [2]–[4] until stopping condition is satisfied.

Figure 2 illustrates 1,024 dictionary elements computed
from GBM and KIRC datasets, respectively, which capture
both color and texture information from the data and is gen-
erally difficult to realize using hand-engineered features.

3.1.3 PSD with Saliency (Salient-PSD)

After training, both LR-PSD and NR-PSD extract features
(sparse codes) on regularly-spaced patches over the input
image. A recent study Wu et al. (2013) shows that saliency
may help improve the classification performance. In tissue
histology, nuclear structure is considered with the highest
saliency, and, as a result, the Salient-PSD is designed to
extract features on patches aligned at segmented nuclear
centers Chang et al. (2013c). An example of tissue image
saliency mask is shown in Fig. 3.

3.1.4 Speeding up the Unsupervised Feature Learning

In large-scale feature learning problems, involving ∼ 105

image patches, it is computationally intensive to evaluate
the sum-gradient over the entire training set. However, both
stochastic gradient descent algorithm and graphical process-
ing unit (GPU) parallel computing can provide a significant
increase in speed. The former approximates the true gradient
of the objective function by the gradient evaluated over mini-
batches, and the latter further accelerates the process (up to
5X) with our Matlab implementation based on an Nvidia
GTX 580 graphics card.

3.2 Spatial Pyramid Matching (SPM)

The codebook, D = [d1, ...,dK ] ∈ R
h×K , consisting of K

sparse tissue morphometric types, is constructed by solving
the following optimization problem:

min
D,C

N∑

i=1

‖zi − Dci‖2

s.t. card(ci ) = 1, ‖ci‖1 = 1, ci � 0,∀i (3)

Fig. 2 Computed dictionary elements (B) from GBM (top row) and
KIRC (bottom row) datasets, respectively
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Fig. 3 Top row original image; bottom row saliency mask

where C = [c1, ..., cN ] ∈ R
K×N is the code matrix assign-

ing each zi to its closest sparse tissue morphometric type
in D, card(ci ) is a cardinality constraint enforcing only one
nonzero element in ci , and ci � 0 is a non-negative con-
straint on all vector elements. Equation (3) is optimized by
alternating between the two variables, i.e., minimizing one
while keeping the other fixed. After training, D is fixed and
the query signal set, Z, is encoded by solving Eq. (3) with
respect to C only.

The next step is to construct a spatial histogram for
SPM Lazebnik et al. (2006). By repeatedly subdividing an
image, histograms of different sparse tissue morphometric
types over the resulting subregions are computed. The spa-
tial histogram, H , is then formed by concatenating the appro-
priately weighted histograms of sparse tissue morphometric
types at all resolutions, i.e.,

H0 = H0
0

Hl =
(
H1
l , ..., H4l

l

)
, 1 ≤ l ≤ L

H =
(

1

2L
H0,

1

2L
H1, ...,

1

2L−l+1 Hl , ...,
1

2
HL

)
(4)

where (·) denotes the vector concatenation operator, l ∈
{0, ..., L} is the resolution level of the image pyramid, and
Hl represents the concatenation of histograms for all image
subregions at pyramid level l (Fig. 4).

Finally, a χ2 SVM was transferred into a linear SVM
based on a homogeneous kernel map Vedaldi and Zisserman
(2012). In practice, the intersection kernel andχ2 kernel have
been found to be the most suitable for histogram represen-
tations Yang et al. (2009). Thus, a homogenous kernel map
is applied to approximate the χ2 kernels, which enables the
efficiency by adopting learning methods for linear kernels,

Fig. 4 Toy example of constructing a three-level pyramid. After quan-
tization (Eq. 3), there are three feature types, represented by diamonds,
circles and crosses, respectively. First, we subdivide the image at three

different level of resolution. Next, for each level of resolution and each
feature type, we count the features that fall in each spatial bin. Finally,
we weight and concatenate each spatial histogram according to Eq. 4
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Fig. 5 GBM examples. First row tumor; second row transition to
necrosis; third row necrosis. In GBM, important phenotype for necro-
sis is loss of nuclear DNA and cell structure. However, necrosis is not
instantaneous and is a dynamic processwhere a subset of cells gradually

change shape, rupture, and release their contents. Transition to necrosis
is represented as subset of cells being at different stages of loosing their
DNA contents and various organelles

e.g., linear SVM. For more details about the homogeneous
kernel map, please refer to Vedaldi and Zisserman (2012).

4 Experiments and Results

In this section, we provide details of the experimental design
that includes data from tumor histopathology. The tumor data
includes curated sets of glioblastoma multiforme (GBM)
and kidney clear cell carcinoma (KIRC) from The Cancer
Genome Atlas (TCGA), which are publicly available from
both the NIH repository and our website.1 The methods and
the detailed configuration involved in the evaluation are listed
as follows,

1. NR-PSDnSPM: The nonlinear kernel SPM that uses
spatial-pyramid histograms of sparse tissue morphomet-
ric types. In this implementation,

(a) n = 1, 2;
(b) The nonlinear regressor (Z = Gσ(WX)) was trained

for the inference of Z;

1 http://vision.lbl.gov

(c) The image patch size was fixed to be 20× 20 and the
number of dictionary elements in the top layer was
fixed to be 1,024. We adopted the SPAMS optimiza-
tion toolbox Mairal et al. (2010) for efficient imple-
mentation of OMP to compute the sparse code, Z,
with sparsity prior set to 30;

(d) The PSD features were extracted on regularly-spaced
patches over the input image, with fixed step-size (20
pixels).

(e) Standard K-means clustering was used for the con-
struction of the dictionary;

(f) The level of pyramid was fixed to be 3; and
(g) The homogeneous kernel map was applied, followed

by the linear SVM for classification.

2. LR-PSD1SPM Chang et al. (2013b): The nonlinear ker-
nel SPM that uses spatial-pyramid histograms of sparse
tissue morphometric types. In this implementation,

(a) The linear regressor (Z = WX) was trained for the
inference of Z;

(b) For consistency, the image patch size and the number
of dictionary elements was fixed at 20×20 and 1,024,
respectively. The sparsity constraint was set at 0.3 for
best performance following cross validation.
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Table 1 Performance of
different methods on the GBM
dataset

The best performances with
different training samples are
printed in bold, which indicate
the superior performance of
proposed method over others

Method Dictionary size=256 Dictionary size=512 Dictionary size=1,024

160 Training

NR-PSD2SPM 91.85 ± 1.03 91.86 ± 0.78 92.07 ± 0.65

NR-PSD1SPM 91.85 ± 0.69 91.89 ± 0.99 91.74 ± 0.85

LR-PSD1SPM Chang et al. (2013b) 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29

Salient-LR-PSD1SPM 87.67 ± 0.78 87.67 ± 0.44 87.32 ± 0.96

LR-PSD Chang et al. (2013b) 86.07 ± 1.42 86.32 ± 1.14 86.15 ± 1.33

ScSPM Yang et al. (2009) 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10

KSPM Lazebnik et al. (2006) 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

CTSPM 78.61 ± 1.33 78.71 ± 1.18 78.69 ± 0.81

80 Training

NR-PSD2SPM 90.51 ± 1.06 90.88 ± 0.66 90.51 ± 1.06

NR-PSD1SPM 90.74 ± 0.95 90.42 ± 0.94 89.70 ± 1.20

LR-PSD1SPM Chang et al. (2013b) 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08

Salient-LR-PSD1SPM 86.07 ± 1.08 86.22 ± 0.76 85.75 ± 1.26

LR-PSD Chang et al. (2013b) 81.73 ± 0.98 82.08 ± 1.23 81.55 ± 1.17

ScSPM Yang et al. (2009) 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98

KSPM Lazebnik et al. (2006) 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

CTSPM 75.93 ± 1.18 76.06 ± 1.52 76.19 ± 1.33

40 Training

NR-PSD2SPM 87.90 ± 0.91 88.21 ± 0.90 87.71 ± 0.81

NR-PSD1SPM 87.72 ± 1.21 86.99 ± 1.76 86.33 ± 1.32

LR-PSD1SPM Chang et al. (2013b) 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14

Salient-LR-PSD1SPM 83.37 ± 1.28 83.19 ± 1.08 82.52 ± 1.28

LR-PSD Chang et al. (2013b) 78.28 ± 1.74 78.15 ± 1.43 77.97 ± 1.65

ScSPM Yang et al. (2009) 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05

KSPM Lazebnik et al. (2006) 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

CTSPM 73.10 ± 1.51 72.90 ± 1.09 72.65 ± 1.41

(c) The PSD features were extracted on regularly-spaced
patches over the input image, with fixed step-size (20
pixels).

(d) Standard K-means clustering was used for the con-
struction of the dictionary;

(e) The level of pyramid was fixed to be 3;
(f) The homogeneous kernel map was applied, followed

by linear SVM for classification.

3. Salient-LR-PSD1SPM: The nonlinear kernel SPM that
uses spatial-pyramid histograms of sparse tissuemorpho-
metric types extracted at nuclear centers. In this imple-
mentation,

(a) The linear regressor (Z = WX) was trained for the
inference of Z;

(b) For consistency, the image patch size and the number
of dictionary elements was fixed at 20×20 and 1,024,
respectively. The sparsity constraint was set at 0.3 for
best performance following cross validation.

(c) The PSD features were extracted on patches centered
at segmented nuclear centers Chang et al. (2013c)
over the input image.

(d) Standard K-means clustering was used for the con-
struction of the dictionary;

(e) The level of pyramid was fixed to be 3;
(f) The homogeneous kernel map was applied, followed

by linear SVM for classification.

4. LR-PSD Chang et al. (2013b): The sparse tissue mor-
phometric features with max-pooling strategy, and RBF
kernel. In the implementation,

(a) The linear regressor (Z = WX) was trained for the
inference of Z;

(b) For consistency, the image patch size and the num-
ber of dictionary elements was fixed at 20 × 20 and
1,024, respectively. The sparsity constraint was set
at 0.3 for best performance following cross valida-
tion.
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Fig. 6 KIRC Examples. First row tumor; second row normal; third
row stromal. In KIRC, normal is defined by self organization of cell
in a “gland-like” structure and stroma refers to one of many support-
ing cells and scaffolding such as collagen, infiltrating immune cells,
fibroblasts, and fat cells. Tumor can have two distinct phenotypes as

follows: (i) cells are represented by the loss of proteins and macromole-
cules contained within the cytoplasm; thus, a clear region between the
nucleus and cell membrane is formed; and (ii) cells can form aberrant
organization that leads to the loss of normal gland-like structures

(c) The PSD features were extracted on regularly-spaced
patches over the input image, with fixed step-size (20
pixels).

(d) Max-pooling strategy was used for sparse feature
summarization.

(e) nonlinear SVM with RBF kernel was used for clas-
sification.

5. ScSPM Yang et al. (2009): The linear SPM that utilizes
linear kernel on spatial-pyramid pooling of SIFT sparse
codes. In this implementation,

(a) The dense SIFT features was extracted on 16 × 16
patches sampled from each image on a grid with step-
size 8 pixels;

(b) The sparse constraint parameter λ was fixed to be
0.15, which was determined empirically to achieve
the best performance;

(c) The level of pyramid was fixed to be 3;
(d) Linear SVM was used for classification.

6. KSPMLazebnik et al. (2006): The nonlinear kernel SPM
that uses spatial-pyramid histograms of SIFT features; In
the implementation,

(a) The dense SIFT features was extracted on 16 × 16
patches sampled from each image on a grid with step-
size 8 pixels;

(b) Standard K-means clustering was used for the con-
struction of the dictionary;

(c) The level of pyramid was fixed to be 3;
(d) The homogeneous kernel map was applied, followed

by linear SVM for classification.

7. CTSPM: The nonlinear kernel SPM that uses spatial-
pyramid histograms of color and texture features; In this
implementation,

(a) Color features were extracted from the RGB color
space;

(b) Texture features were extracted via steerable fil-
ters Young and Lesperance (2001) with 4 directions
(θ ∈ {0, π

4 , π
2 , 3π

4 }) and 5 scales (σ ∈ {1, 2, 3, 4, 5})
from the grayscale image;

(c) The feature vector was constructed by concatenating
texture and mean color on 20 × 20 patches, empiri-
cally, to achieve the best performance;

(d) Standard K-means clustering was used for the con-
struction of the dictionary;
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Table 2 Performance of
different methods on the KIRC
dataset

The best performances with
different training samples are
printed in bold, which indicate
the superior performance of
proposed method over others

Method Dictionary size=256 Dictionary size=512 Dictionary size=1,024

280 Training

NR-PSD2SPM 99.03 ± 0.20 98.89 ± 0.19 98.92 ± 0.21

NR-PSD1SPM 98.98 ± 0.35 98.81 ± 0.45 98.69 ± 0.41

LR-PSD1SPM Chang et al. (2013b) 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45

Salient-LR-PSD1SPM 95.45 ± 0.50 95.17 ± 0.43 94.98 ± 0.32

LR-PSD Chang et al. (2013b) 90.72 ± 1.32 90.18 ± 0.88 90.43 ± 0.80

ScSPM Yang et al. (2009) 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50

KSPM Lazebnik et al. (2006) 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

CTSPM 87.45 ± 0.59 87.95 ± 0.49 88.53 ± 0.49

140 Training

NR-PSD2SPM 98.26 ± 0.34 98.07 ± 0.46 97.85 ± 0.56

NR-PSD1SPM 98.17 ± 0.72 98.05 ± 0.71 97.99 ± 0.82

LR-PSD1SPM Chang et al. (2013b) 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84

Salient-LR-PSD1SPM 93.20 ± 0.37 93.18 ± 0.65 92.78 ± 0.53

LR-PSD Chang et al. (2013b) 88.75 ± 0.37 88.93 ± 0.45 87.98 ± 0.86

ScSPM Yang et al. (2009) 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63

KSPM Lazebnik et al. (2006) 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

CTSPM 86.55 ± 0.99 86.40 ± 0.54 86.49 ± 0.58

70 Training

NR-PSD2SPM 96.67 ± 0.53 96.20 ± 0.54 95.57 ± 0.66

NR-PSD1SPM 96.42 ± 0.68 96.41 ± 0.59 96.03 ± 0.69

LR-PSD1SPM Chang et al. (2013b) 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40

Salient-LR-PSD1SPM 92.45 ± 1.06 92.32 ± 1.13 92.31 ± 0.97

LR-PSD Chang et al. (2013b) 87.56 ± 0.78 87.93 ± 0.67 87.13 ± 0.97

ScSPM Yang et al. (2009) 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86

KSPM Lazebnik et al. (2006) 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

CTSPM 84.76 ± 1.32 84.29 ± 1.53 83.71 ± 1.42

(e) The level of pyramid was fixed to be 3;
(f) The homogeneous kernel map was applied, followed

by linear SVM for classification.

All experimental processes were repeated 10 times with
randomly selected training and testing images. The final
results were reported as the mean and standard deviation of
the classification rates on the following two distinct datasets,
which included vastly different tumor types:

1. GBM Dataset. The GBM dataset contains 3 classes:
tumor, necrosis, and transition to necrosis, which were
curated fromWSIs scanned with a 20× objective (0.502
micron/pixel). Examples can be found inFig. 5. The num-
ber of images per category are 628, 428 and 324, respec-
tively. Most images are 1, 000 × 1, 000 pixels. In this
experiment, we trained on 40, 80 and 160 images per
category and tested on the rest, using three different dic-
tionary sizes: 256, 512 and 1,024. Detailed comparisons
are shown in Table 1.

2. KIRC Dataset. The KIRC dataset contains 3 classes:
tumor, normal, and stromal, which were curated from
WSIs scannedwith a 40× objective (0.252micron/pixel).
Examples can be found in Fig. 6. The number of images
per category are 568, 796 and 784, respectively. Most
images are 1, 000 × 1, 000 pixels. In this experiment,
we trained on 70, 140 and 280 images per category and
tested on the rest, using three different dictionary sizes:
256, 512 and 1,024. Detailed comparisons are shown in
Table 2.

5 Discussion

5.1 Does Unsupervised Feature Leaning Provide an
Improvement over Human Engineered Features?

Feature extraction is the very first step for the construc-
tion of classification/recognition system, and is one of the
most important factors that affect the performance. In our
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Fig. 7 Comparison of
performance between systems
based on human engineered
features and systems based on
unsupervised feature learning

evaluation, SIFT, color and texture are all human engi-
neered features, which are widely used in various appli-
cations, including but not limited to image classification,
object detection and segmentation. However, these pre-
fixed human engineered features typically suffer from large
data variations in the big dataset, and, as a result, have
limited generalization ability. As shown in Fig. 7, sys-
tems based on unsupervised feature learning (e.g., NR-
PSD1SPM and LR-PSD1SPM) generate better performance
compared with the ones based on human engineered fea-
tures (e.g., ScSPM, KSPM and CTSPM), which indicates
that unsupervised feature learning can better capture the
intrinsic properties in histological datasets, and therefore,
leads to systems that are more tolerant to batch effects in the
data.

5.2 Does Saliency Improve Classification?

Salient-PSD differs from PSD in that PSD features are
densely extracted per regularly-spaced image patch without
using saliency information as prior. Recent studies Wu et
al. (2013) indicate that saliency-awareness may be helpful
for the task of image classification, thus it will be inter-
esting to figure out whether regular PSD features can be
improved by the incorporation of saliency as prior. There-
fore, we designed salient PSD (Salient-PSD) features, which
were only extracted on patches aligned with nuclear cen-
troid locations. Comparison of classification performance,
between PSD features and salient-PSD features are shown in
Fig. 8 for both GBM and KIRC datasets, which shows that,
for PSD features, saliency-awareness plays a negative role
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Fig. 8 Comparison of
performance between systems
with/without the incorporation
of saliency information during
feature extraction

for the task of tissue histology classification. One possible
explanation is that, in the task of tissue histology classifica-
tion, PSD leads to appearance-based image representation,
thus requires dense sampling all over the place in order to
faithfully assemble the view of the image.

5.3 Is There a Preference for Linear and Non-linear
Regressors?

As pointed out in Kavukcuoglu et al. (2008), nonlinear
regressor is required to produce the sparse representations
using an over-complete set due to the non-orthogonality
of the filters. To validate the choice of nonlinear regres-
sor against the linear one for the task of tissue histology
classification, we made comparisons between PSDs with
linear regressor and nonlinear regressor. The experimental
results suggest that, without any surprise, PSD with nonlin-
ear regressor outperforms PSDwith linear regressor in terms

of both reconstruction and classification, as shown in Figs. 9
and 10, respectively .

5.4 Does Multilayer PSD Performs Better than a Single
Layer PSD?

The work in Jarrett et al. (2009) suggests that multi-stage
feature extraction system generally outperforms single-stage
system. Also, it is worth to mention that, as pointed out
in Yang et al. (2009), spatial pyramidmatching kernel is con-
ceptually similar to an extra layer of sparse coding and spa-
tial pooling, which suggests that, structurally, PSD1SPM and
PSD2SPM are similar to two-stage and three-stage systems,
respectively. The comparisons among PSD (single-stage sys-
tem), PSD1SPM (two-stage system) and PSD2SPM (three-
stage system), as shown in Tables 1, 2 and Fig. 11, indicates
that:
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Fig. 9 Comparison of PSD with linear and nonlinear regressors in terms of reconstruction. a Original image; b reconstruction by PSD with linear
regressor (SNR = 4.9429); c Reconstruction by PSD with nonlinear regressor (SNR = 9.3436)

Fig. 10 Comparison of PSD
with linear and nonlinear
regressors for sparse feature
approximation in terms of
classification

123



Int J Comput Vis (2015) 113:3–18 15

Fig. 11 Comparison of
performance between systems
with various number of stages

1. Multi-stage feature extraction systemoutperforms single-
stage system for the classification of histology sections;

2. By stacking multiple unsupervised feature learning mod-
ule (PSD) into hierarchy, we experienced a slightly
improved performance, which might due to the fact that
multi-stage feature learning system can capture higher-
level patterns in the tissue images;

3. The improvement of performance might decay with the
increase of the depth (stages) of feature extraction sys-
tem. As a result, the two-stage system (PSD1SPM) is
superior to the single-stage system (PSD); while the
three-stage system (PSD2SPM) is only slightly better
than the two-stage one.

From our intensive evaluation, as shown in Tables 3 and 4,
some other important insights associatedwith themulti-stage
architecture are listed as follows,

Table 3 Best performance of different architectures within the NR-
PSD1SPM framework on theGBMdataset with 160 training images per
category, where ABS means absolute value rectification; LCN means
local contrast normalization; MP means max-pooling

Structure Best performance

NR-PSD1SPM 91.89 ± 0.99

NR-PSD1
ABSSPM 91.85 ± 0.83

NR-PSD1
LCNSPM 89.13 ± 0.94

NR-PSD1
MPSPM 91.87 ± 0.90

NR-PSD1
ABS+LCN+MPSPM 89.35 ± 0.77

1. Local contrast normalization significantly impairs the
performance. Local contrast normalization enhances the
structures in the image, and, as a result, ignores the vari-
ation of intensity (color). However, for tissue histology
images, variations in intensity (color) typically corre-
spond to different biological processes (e.g., cell pro-
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Table 4 Best performance of different architectures within the NR-
PSD1SPM framework on theKIRCdatasetwith 280 training images per
category, where ABS means absolute value rectification; LCN means
local contrast normalization; MP means max-pooling

Structure Best performance

NR-PSD1SPM 98.98 ± 0.35

NR-PSD1
ABSSPM 98.95 ± 0.43

NR-PSD1
LCNSPM 95.97 ± 0.88

NR-PSD1
MPSPM 98.97 ± 0.50

NR-PSD1
ABS+LCN+MPSPM 95.81 ± 0.67

liferation, cell death, etc). Therefore, with the choice of
PSD as the unsupervised feature learning module, local
contrast normalization is not desired during the construc-
tion of multi-stage feature extraction system, for the task
of tissue histology classification.

2. Extra pooling step is not necessary. As pointed out
in Yang et al. (2009), spatial pyramid matching kernel
is conceptually similar to an extra layer of sparse cod-
ing and spatial pooling, the adoption of extra pooling
step (e.g., max-pooling) during the concatenation of PSD
modules does not improve the performance, and thus is
not necessary.

3. Absolute value rectification is not necessary. As pointed
out in Jarrett et al. (2009), the use of max-pooling alle-
viates the need for Abs rectification. This statement also
seems to hold when spatial pyramid matching kernel is
applied, at least for the application of tissue histology
classification.

5.5 What are the Merits of (PSD)nSPM for Classification of
Tumor Histopathology?

Experimental results and discussions suggests that deep
learning has the following merits for classification of tissue
histology:

1. Extensibility to different tumor types Tables 1 and 2
demonstrate the superiority and consistency in the perfor-
mance of the proposed approach on two vastly different
tumor types, which confirms that unsupervised feature
learning has better generalization capability compared to
human engineered features (e.g., SIFT), and ultimately
ensures the extensibility of proposed approach to differ-
ent tumor types.

2. Robustness in the presence of large amounts of techni-
cal variations and biological heterogeneities Tables 1
and 2 indicate that the performance of our approach,
based on small number of training samples, is compara-
ble to or better than the performance of ScSPM, KSPM
and CTSPM, which are based on large number of train-

ing samples. Given the fact that TCGA datasets contain
large amounts of technical variations and biological het-
erogeneities, these results clearly verify the robustness of
our approach, which improves the scalability with vary-
ing training sample sizes, and the reliability of further
analysis on large cohort of whole mount tissue sections.

6 Conclusion and Future Work

In this paper, we proposed a multi-stage PSD framework
for classification of distinct regions of tumor histopathol-
ogy, which outperforms traditionalmethods that are typically
based on pixel- or patch-level features. Our analysis indicates
that the proposed approach is (i) extensible to different tumor
types; (ii) robust in the presence of large amounts of techni-
cal variations and biological heterogeneities; and (iii) scal-
able with varying training sample sizes. Future research will
focus on (i) further comparative study between our approach
and the state-of-art convolutional neural networks (CNNs)
LeCun et al. (1998); Huang and LeCun (2006); (ii) further
validation of our approach on other tumor types; and (iii)
further application of our approach on the discrimination of
phenotypic responses in multicellular systems.
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