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ABSTRACT

Membrane proteins organize themselves in a linear fashion where
adjacent cells are attached together along the basal-lateral region.
Their intensity distributions are often heterogeneous and may lack
specificity. Grouping of these linear structures can aid in segmen-
tation and quantitative representation of protein localization. How-
ever, quantitative analysis of these signals is often hindered by noise,
variation in scale, and perceptual features. This paper introduces an
iterative voting method for inferring the membrane signal as it relates
to continuity. A unique aspect of this technique is in the topography
of the voting kernel, which is refined and reoriented iteratively. The
technique can cluster and group membrane signals along the tangen-
tial direction. It has an excellent noise immunity and is tolerant to
perturbations in scale. Application of this technique to quantitative
analysis of cell-cell adhesion mediated by integral cell membrane
proteins is demonstrated.

1. INTRODUCTION

Epithelial cells in vivo form sheets and complex hollow tubes or
spheres. In cell culture, traditional growth on rigid substrata results
in a sheet of cells, i.e. a monolayer, while providing flexible sub-
strata allows epithelial cells to form tissue-specific structures. For
example, mammary epithelial cells form hollow spheres (e.g., acini)
in substrata that are composed of proteins of the basement mem-
brane, but form hollow tubes when cultured in proteins from the
stromal extracellular matrix. Both monolayers and complex struc-
tures require cell-cell adhesion mediated by integral cell membrane
proteins. One such protein, E-cadherin, is pathoneumonic for normal
epithelia and is lost during cancer. Research in the area of quanti-
tative analysis of cell-based assay has spanned learning techniques
using texture-based features for characterizing patterns of protein
expression [4], geometric techniques using nonlinear filtering and
curve evolution [2], and shape regularization for segmentation of
subcellular compartments [9]. While segmentation of nuclear re-
gions provides context for localization studies [6], probe features
also need to be delineated for certain antibodies. In this paper, a new
method for quantifying E-cadherin that is bound to the basal-lateral
region of the cell is presented. Loss of E-cadherin can be related to
invasion and is a potential precursor for cancer initiation. These sig-
nals correspond to locally linear features that delineate cell bound-
aries as shown in Figure 1. However, the membrane signal may have
nonuniform intensity around the cell boundary and may even be per-
ceptual at certain locations along the boundary. It is well known
that symmetry, closure, and continuity are preattentive processes in
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the human vision system that can aid in object-level delineation and
recognition [1].

(a) (b)

Fig. 1. Membrane signals from 2D and 3D cell culture models: (a)
2D system, and (b) 3D system.

The proposed method allows inference of saliency from incom-
plete boundary information through voting and perceptual grouping,
and is implemented through the refinement of a set of specifically
tuned voting kernels. Spatial voting has been studied for at least
four decades. Hough introduced the notion of parametric cluster-
ing in terms of well-defined geometry, which was later extended to
the generalized Hough transform. In general, voting operates on
continuity and proximity, which can occur at multiple scales, e.g.,
points, lines, or lines of symmetry. The novelty of our approach is
in defining a series of kernels that vote iteratively along the radial
or tangential direction. Voting along the radial direction leads to the
localization of the center of mass [5, 6], while voting along the tan-
gential direction enforces continuity. At each iteration, the kernel
orientation is refined until it converges to a focal response. Several
variations of these kernels have been designed and tested. For ex-
ample, for inferring radial symmetries, kernels are cone-shaped and
their maximum strength is expressed at the center of the cone [2, 6].
In this context, the voting kernels are initially applied along the gra-
dient directions, then, at each consecutive iteration and at each grid
location, kernel orientations are realigned along the maximum re-
sponses. In the case of continuous boundary inference, the voting
kernels are applied along the normal to the gradient direction. The
topography of the kernel is also refined and focused as the iterative
process continues. The method is applicable to perceptual shape fea-
tures, has excellent noise immunity, is tolerant to variations in target
shape scale, and is applicable to a large class of application domains.

An intuitive explanation of the differences between variational
and iterative voting models of segmentation follows. Both are iter-
ative; however, in variational models [9], geometric constraints are
specified and then regularized for continuity. In voting models, ge-
ometric constraints are embedded in the shape of the kernel, while
smoothness constraints are incorporated in how the topography of
the kernel decays smoothly from an ideal response. For example,
consider separation of three synthetic overlapping blobs, as shown
in Figure 2. Iterative voting [6] collapses each blob to its local cen-
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Fig. 2. Detection of radial symmetries for a synthetic image with
multiple overlapping objects: (a) original image; (b)-(g) voting land-
scape at each iteration; and (h) final localization of centers of mass.

troid through applications of kernels, as shown in Figure 3. These
kernels project gradient information inward, along the radial direc-
tion, to infer an approximation to the center of mass. In this case, the
desirable saliency is encoded in the topography of the kernel, which
has maximum strength at the center of the cone.
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Fig. 3. Kernel topography: (a-e) Evolving kernel for the detection of
radial symmetries (shown at a fixed orientation) has a trapezoidal ac-
tive area with maximum strength at the center for inference of center
of mass.

The organization of this paper is as follows. Section 2 provides
a brief review of the previous research. Section 3 describes the ba-
sic idea and detailed implementation of tangential voting. Section 4
demonstrates the experimental results. Section 5 concludes the pa-
per.

2. REVIEW OF PREVIOUS WORK

The difficulties in the detection of saliency are often due to vari-
ations in scale, noise, and topology. Other complexities originate
from missing data and perceptual boundaries that lead to diffusion
and dispersion of the spatial grouping in the object space. Tech-
niques for grouping local features into globally salient structures
have incorporated dynamic programming [7], clustering and graph
theoretic methods [8], and tensor voting [3]. While these techniques
differ in their concepts, they share a common thread of using conti-
nuity and proximity along the minimum energy path to infer global
saliency.

The proposed method falls into the category of iterative tech-
niques, which are adaptive to geometric perturbation and typically
produce more refined results. This method shares several attributes
with tensor-based voting [3]; however, it differs in that it is iterative
and is scalar.

Fig. 4. Kernel topography: Oriented kernels for inference of conti-
nuity are bidirectional, and their energy dissipates as a function of
distance. Initially, the energy is dispersed (top row), but becomes
more focused (bottom row).

3. APPROACH

The membrane signals correspond to the negative curvature maxima
at a given scale within the image space. But curvature features are
noisy and may suffer from undesirable artifacts. The process is ini-
tiated by voting with a Gaussian kernel at each image feature point.
Let F (xo, yo) be the curvature feature at location(xo, yo) in the im-
age. Let(xn, yn) be a point in the neighborhood of(xo, yo) that can
be influenced with a kernel applied at position(xo, yo). The initial
voted image is then represented as

V (xn, yn) =
X

(xn,yn)∈Neighbor(xo,yo)

{F (xo, yo) ∗ G(xo,yo)(σ)}

(1)
The refinement of the voted image is iterative, involving application
of a more focused kernel at the next iteration along theα direction.

α = arctan
Vyy − Kmax

Vxy

(2)

WhereVyy andVxy are the local derivatives of the voted image, and
Kmax is the maximum curvature computed from the Hessian of the
voted image. The shape of the kernels, shown in Figure 4, indicates
whether the energy distribution of the kernel is focused or dispersed.
Initially, the energy is dispersed; however, at each consecutive iter-
ation, the energy becomes more focused and at the same time the
kernel orientation is redirected along the direction of maximum re-
sponse, as shown in Figure 5a, and the entire process is shown in
Figure 5b. These voting kernels are precomputed and indexed for
rapid retrieval.

V (xn, yn) =
X

(xn,yn)∈Neighbor(xo,yo)

{F (xo, yo)∗Kernel(σ, θ, α)}

(3)
Iterative Voting

1. Initialize the parameters:Initialize rmax, ∆max, and a se-
quence∆max = ∆N < ∆N−1 < · · · < ∆0 = 0. Setn :=
N , whereN is the number of iterations, and let∆n = ∆max.
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Fig. 5. (a) Redirection of the kernel in the next iteration; and (b)
general flow of the algorithm.

rmax refers to the extent of the voting influence along a given
orientation.rmax decays as a function of the distance to the
voting pixel.

2. Initialize the saliency feature image:Define the feature im-
ageF (x, y) to be the local external force at each pixel of
the original image. The external force is set to the maximum
(negative) curvature, which corresponds to the membrane sig-
nal.

3. Initialize the voting magnitude:Apply the isotropic voting of
Equation 1.

4. Update the voting direction:Compute the Hessian of the
voted landscape and construct an orientation map based on
Equation 2.

5. Refine the angular range:Let n := n − 1, apply Equation 3,
and repeat steps 3-5 untiln = 0.

4. EXPERIMENTAL RESULTS

An experiment has been designed to quantify membrane signals (e.g.,
E-cadherin) and a number of structural features in the model system.
This experiment consists of both 2D and 3D cell culture models un-
der control and treated conditions. In this case, the treatment is radi-
ation and TGFβ. The primary rationale for extending the cell culture
models to 3D is that they provide a more faithful replication of cell
behaviorin vivothan is possible using the 2D substrata. While the in-
formation these cultures can provide is undoubtedly more valuable,
the experiments are much harder to set up, and require more ad-
vanced quantitative tools for phenotypic characterization [2]. Since
the total E-cadherin signal is averaged with respect to the number of
cells per image, cells are first counted using a method presented in
our earlier papers [2], which also uses iterative voting, but the voting
is applied in the radial direction. All samples are stained with nu-
clear stain, and radial voting provides the basis for cell counting and

a more refined nuclear segmentation [2], as shown in Figure 6. Fig-
ures 7 and 8 show an example of E-cadherin localization for 2D and
3D cell culture models, respectively. In this experiment, a total of
118 images were collected for the 4 experimental factors (e.g., con-
trol for 2D model system, 2D treatment, control for 3D model sys-
tem, 3D treatment). Voting along the tangential direction enhances
the E-cadherin signal while diffusing the background fluorescence
signal. We have quantified structural (e.g., organization) and func-
tional (e.g., E-cadherin) features of each model system. Structural
features are quantified through the average bending energy of the
boundary that represent each colony. Functional features are com-
puted in two ways with similar results. In the first method, voted
results are thresholded with a single threshold for the entire data
set, then overlaid on the probe channel, where fluorescence signal
is accumulated. In the second method, voted energy of each pixel
is weighted on the probe channel, and the weighted fluorescence
signal is subsequently aggregated. Results of structural and func-
tional analysis are shown in Figure 9. Figure 9a indicates loss of
colony organization as a result of double treatments, where organiza-
tion is quantified by the average curvature along the boundary of the
colonies; and Figure 9b indicates that E-cadherin is better preserved
in the 3D model systems under identical treatment conditions. An
interesting question is the extent that structural (e.g., organization)
and functional (e.g., E-cadherin per cell) features are surrogatesfor
a specific treatment. In this context, linear (e.g., linear discriminant
analysis) and nonlinear classifiers (e.g., support vector machine) are
trained to evaluate the recognition performance. The classification
error probabilities are shown in Table 1.

(a) (b)

Fig. 6. Two examples of voting results for the nuclear stained 3D cell
culture model indicate the detection and counting of nuclear regions.

Organization E-cadherin Organization and E-cadherin
LDA 38% 9% 9%
SVM 49% 11% 13%

Table 1. Estimated probability of classification error using leave-
one-out method indicates that E-cadherin is can be used as a proxy
for the treatment.

5. CONCLUSION AND FUTURE WORK

Iterative voting for detecting saliency in cell-based assays is intro-
duced and applied to membrane-bound proteins that are responsi-
ble for cell-cell contact. The main novelties are (1) re-estimation of
voting direction and (2) updating the voting fields by focusing their
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Fig. 7. Localization of membrane bound protein for 2D cell culture
model: (a) original image; (b) initial voting landscape; and (c) the
final voting results corresponding to the enhanced boundaries.

(a) (b)
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Fig. 8. Localization of membrane bound protein for 3D cell cul-
ture model: (a) a slice of the original image of the mammosphere
(3D cell culture model); (b) initial voting landscape; and (c) voted
results corresponding to the membrane proteins along the points of
maximum negative curvature.
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Fig. 9. Phenotypes of organization and E-cadherin stability: (a) Or-
ganization of mammosphere measured as the average bending en-
ergy of a front enclosing the colony; and (b) E-cadherin is better
preserved in 3D than in 2D under identical set of treatment.

energy at each consecutive iteration. We suggest that the iterative
voting strategy overcomes the drawbacks of traditional static voting
and shares positive attributes of geometric regularization. The vot-
ing algorithm provides a general framework for inferring a variety of
types of low-level saliency: by simply modifying the kernel shapes
and external forces measured from the image (gradient, curvature,
etc.), the algorithm may be adapted to an array of cell-based assays.
The performance of the method has been demonstrated on real data
under multiple experimental conditions.
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