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ABSTRACT

Cell membrane proteins play an important role in tissue architecture
and cell-cell communication. We hypothesize that segmentation and
multivariate characterization of the distribution of cell membrane
proteins, on a cell-cell basis, enable improved classification of treat-
ment groups and identify important characteristics that can otherwise
be hidden. We have developed a series of computational steps to
(i) delineate cell membrane protein signals and associate them with
specific nuclei, (ii) compute a coupled representation of the multi-
plexed DNA content with membrane proteins and other end points,
(iii) rank computed features associated with such a multivariate rep-
resentation, (iv) visualize selected features for comparative evalua-
tion, and (v) discriminate between treatment groups in an optimal
fashion. The novelty of our method is in the segmentation of the
membrane signal and the multivariate representation of phenotypes
on a cell-cell basis. To test the utility of the new method, the pro-
posed computational steps were applied to images of cells that have
been irradiated with different radiation qualities in the presence and
absence of TGFβ. These samples are labeled for their DNA content
and E-cadherin membrane protein. We demonstrate that multivari-
ate representation of cell-cell phenotypes improves predictive and
visualization capabilities among different treatment groups, and in-
creases quantitative sensitivity of cellular responses.

Index Terms— Multivariate analysis of imaging assay, Cad-
herin, Segmentation, Irradiation

1. INTRODUCTION

Cell surface proteins regulate cell-cell interactions and physical
properties of tissues. E-cadherin is one such a calcium-dependent
cell adhesion molecule that influences differentiation and tissue
structure. It forms adherens junctions between epithelial cells and
communicates with the actin cytoskeleton through associated in-
tracellular proteins. As an endpoint, E-cadherin has been studied
extensively, since it appears to function as a barrier to cancer. Loss
of E-cadherin has been associated with (i) increased motility, (ii)
cancer progression and metastasis, and (iii) increased resistance
to cell death [1]. Since down-regulation of E-cadherin is an im-
portant endpoint for quantitative systems biology, we hypothesize
that detailed quantitative representation of the E-cadherin signals
provide important clues for understanding the effects of different
biological perturbations. Furthermore, we reason that representation
of E-cadherin on a cell-cell basis, coupled with morphological and
structural features obtained by other imaging probes, will provide a
multivariate representation that can be mined to improve predictive
capability. This paper introduces a novel method for characteriz-
ing the E-cadherin signal on a cell-cell basis and demonstrates that
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multivariate representation of imaging data is useful for (i) charac-
terizing heterogeneity, (ii) identifying features that are not visually
obvious to human observers, (iii) reducing the number of imaging
probes that are needed for differentiating phenotypes associated
with different sets of experimental treatments, and (iv) visualizing
multivariate representation of localization data in the same way that
expression data are presented.

With the exception of [2], few studies have been published quan-
tifying membrane signals for high content screening. Even in this
case, few details of the methodology are provided. Furthermore, bi-
ological samples are limited to HeLa cells that are known to have
well-behaved size and shape features. Complexities and challenges
associated with quantifying cell surface protein patterns originate
from (i) background variation, (ii) non-uniformity of the signal, (iii)
non-uniformity in the width and strength of the signal, and (iv) non-
uniformity in nuclear size and shape features. More elaborate multi-
variate representations have been proposed [3, 4]; however, analyses
do not target cell surface proteins on a cell-cell basis.

2. TECHNICAL APPROACH

Our computational protocol avoids traditional ad-hoc steps in favor
of model-based geometric methods to delineate subcellular regions,
associate cell surface protein signals with particular cells, and drive
a multivariate representation of each cell for further analysis. By
this method, the E-cadherin signal is coupled with labeled nuclear
regions so that context can be established. The protocol consists
of five major steps: nuclear segmentation, E-cadherin localization,
feature extraction, feature selection, and discriminant analysis, as
shown Fig. 1. First, each nucleus is localized using an edge-based
method, and then grouped subject to convexity and continuity. Un-
like thresholding, edge-based methods have an improved immunity
to non-uniformity in the fluorescent signal, thus providing a more
robust and accurate delineation of nuclear boundaries. Second, the
E-cadherin signal is inferred through an iterative voting method with
respect to continuity. A unique aspect of this technique is in the to-
pography of the voting kernel, which is iteratively refined and reori-
ented. The technique clusters and groups membrane signals along
the tangential direction. It has an excellent noise immunity and is
tolerant to perturbations in scale. Furthermore, the membrane signal
is registered with the corresponding nuclear region by an evolving
front. Third, approximately 400 features corresponding to morphol-
ogy (e.g., size, aspect-ratio, bending energy of contour), structure
(e.g., texture features), localization (e.g., fluorescent intensity and its
derived features) and organization (e.g., relationship between cells
represented as an attributed graph) are computed for each cell. These
measurements are stored in a schema that captures their relationship,
order, and cardinality. Fourth, a minimal subset of features from the
full multivariate representation is selected and ranked to maximize
class separability, where classes correspond to different treatment
groups. Finally, the discriminating and predictive capability of an
optimal feature subset is evaluated using the Holdout method and
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Fig. 1. Multivariate representation of nuclear and E-cadherin re-
sponses for discriminant analysis of iron and gamma irradiation.

linear discriminant analysis (LDA) classifiers.

2.1. Nuclear segmentation
Nuclear segmentation enables context for quantifying localization
and other structural and morphological features on a cell-cell basis.
However, as a result of sample preparation and fixation, fluorescent
signals of adjacent nuclear regions overlap and form a clump. It
is important to quantify the phenotypic signature at the individual
cell level by partitioning a clump of cells. Initially, our computa-
tional protocol delineates isolated nuclear regions. Next, it parti-
tions touching cells by applying a series of geometric constraints
[5]. The basic idea is that nuclear geometry is almost convex, and
that at the intersection of the overlapping boundaries, folds (points
of maximum curvature) are formed. Thus, by grouping folds that are
formed by a closed contour, a convex partition can be inferred. The
technique is iterative, and has been shown to be effective in segment-
ing touching nuclei.

2.2. Segmentation of E-cadherin signals
There are two critical steps in segmentation of the membrane-bound
protein. In the first step, the membrane-bound protein is accentuated
and enhanced. In the second step, the membrane-bound protein is
assigned to individual nuclear features. The first step utilizes itera-
tive tangential voting to remove noise, enhance signal, and complete

Fig. 2. A sample of kernel topography: Oriented kernels for infer-
ence of continuity are bidirectional, and their energy dissipates as a
function of distance. Initially, the energy is dispersed (top row), but
becomes more focused (bottom row).

perceptual gaps. The second step leverages evolving fronts, in the
context of the nuclear region, for the assignment process.

2.2.1. Iterative tangential voting

The membrane signals correspond to the negative curvature maxima
at a given scale within the image space. But curvature features are
noisy and may suffer from undesirable artifacts. The process is ini-
tiated by voting with a Gaussian kernel at each image feature point.
Let F (xo, yo) be the curvature feature at location (xo, yo) in the im-
age. Let (xn, yn) be a point in the neighborhood of (xo, yo) that can
be influenced with a kernel applied at position (xo, yo). The initial
voted image is then represented as

V (xn, yn) =
∑

(xn,yn)∈Neighbor(xo,yo)

{F (xo, yo) ∗G(xo,yo)(σ)}

The refinement of the voted image is iterative, involving application
of a more focused kernel at the next iteration along the direction
α = arctan{(Vyy−Kmax)/Vxy}, where Vyy and Vxy are the local
derivatives of the voted image, and Kmax is the maximum curvature
computed from the Hessian of the voted image. The shape of the
kernels, shown in Fig. 2, indicates whether the energy distribution of
the kernel is focused or dispersed. Initially, the energy is dispersed;
however, at each consecutive iteration, the energy becomes more fo-
cused and at the same time the kernel orientation is redirected along
the direction of maximum response. Details of iterative tangential
voting can be found in [6].

2.2.2. Evolving fronts

The next step of the computational process is to design an ini-
tial condition, and define additional constraints for robust seg-
mentation. The initial condition is derived from the region of
the space identified by the segmented DNA stain, presented ear-
lier. This is based on region-based Voronoi tessellation of the
nuclear mask, which generates a curvilinear partition of the im-
age space, shown in Fig. 1a. Let K be the total number of nu-
clear region, Ni, in the image. The Voronoi region is defined by
Vi = {p|dist(p, Ni) < dist(p, Nj), j ∈ {0, 1, . . . , K−1}, j 6= i},
in which dist(p, Ni) is the distance between point p and the nuclear
region Ni, dist(p, Ni) = minq∈Ni |p− q|.

Initiating from the Voronoi region, assignment of the cell surface
protein is computed by optimizing an evolving front where external
forces are defined by the gradient vector field [7]:

E =

∫ 1

0

1

2
(α|X ′(s)|2 + β|X ′′(s)|2) + Eext(X(s))ds (1)

where, X(s) = [x(s), y(s)], s ∈ [0, 1], is the curve representation.
The first and second terms ensure smoothness through stretching and
bending. The third term attracts the curve towards a derived repre-
sentation of the cell surface protein marker, which is a function of
the voted image. The evolving front corresponds to

X(s, t) = αX ′′(s, t)− βX ′′′(s, t)−∇Eext (2)



where, ∇Eext = −V and V (x, y) = (u(x, y), v(x, y)) is the gra-
dient vector flow that minimizes the energy functional

ε =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2|V −∇f |2dxdy (3)

where f(x, y) is a skeletonized representation of the voted image.
A sample example is selected from our dataset to demonstrate

the behavior of iterative tangential voting. The results are shown
in Fig. 1. In addition to iterative tangential voting, segmentation
through evolving fronts is also demonstrated.

2.3. Multivariate representation of cellular features

Phenotypic signatures are computed from every imaging probe that
labels an organelle or localization of a specific protein. In this case,
three distinct feature sets of morphology, structure, and fluorescence
signal are extracted from each marker. For example, in the case of a
marker associated with the nuclear region, morphological features of
shape (e.g., area, aspect ratio, axis), bending energy computed from
curvature of bounding contour are also extracted at multiple scales.
Structural features correspond to textural attributes that are detected
from first, second, and third order derivatives of oriented Gaussian
filters [8]. These oriented filters capture responses of inherent image
features at multiple scales:

Gθ
1 = Gx cos θ + Gy sin θ

Gθ
2 = Gxx cos 2θ + 2Gxy sin θ cos θ + Gyy sin 2θ

Gθ
3 = Gxxx cos 3θ + 3Gxxy sin θ cos 2θ

+3Gxyy sin 2θ cos θ + Gyyy sin 3θ,

where Gx = ∂G(x, y)/∂x, Gy = ∂G(x, y)/∂y, and G(x,y) is a
2-D Gaussian function. Finally, the fluorescence signal is quanti-
fied at global and local scales. While global representation relies
on average signal within the organelle of interest, local representa-
tion characterizes how the fluorescence signal is spatially distributed
within the nuclear mask. An example of this representation is the
change in the fluorescence signal along the radial direction originat-
ing from the center of the mass. Since the texture feature vector is
rather large, its dimensionality is reduced through principal compo-
nent analysis (PCA) for subsequent analysis. We opted not to apply
the PCA to the entire representation since the physical meaning of
the feature set will be lost during the projection operation. A total
of 324 texture features are computed and, through PCA dimension-
ality reduction, 8 projected features that account for 99% of the total
variance are retained for further analysis.

2.4. Feature selection and discriminant analysis

Feature selection ranks the feature sets based on some measure of
class separability. Here, the class separability is defined as the ratio
of the determinant of mix-class scatter and the determinant of within-
class scatter matrices. This measure will take a large value when
samples are well clustered around their class means and the clusters
of different classes are well separated. The Holdout method is used
to evaluate performance of discriminant analysis. In this method,
half of the data is randomly selected for training a classifier, and
the other half is used for testing. Classification is based on linear
discriminant analysis, and the process of sample selection, training,
and classification is repeated to assure that the classification perfor-
mance is not compromised by a specific set of training samples.

Table 1. Experimental variables
Sham
TGFβ

0.1Gy + TGFβ 0.03Gy + TGFβ
0.2Gy + TGFβ 0.1Gy + TGFβ

Iron 0.5Gy + TGFβ Gamma 0.4Gy + TGFβ
irradiation 1Gy + TGFβ irradiation 1Gy + TGFβ

1Gy 2Gy + TGFβ
2Gy

Table 2. Top-ranked feature combinations for discriminating differ-
ent cellular phenotypes among all treatment groups. PC stands for
principal component.

Discriminating
Features power

1-feature

(1) Mean E-cadherin signal 2.1832
(2) Total E-cadherin signal 1.7691
(3) Nuclear texture PC #2 1.5306

(4) Variance of E-cadherin signal 1.4724
(5) Nuclear size 1.2398

(6) Nuclear texture PC #1 1.2312

2-feature

(1) + (3) 3.3555
(1) + (4) 2.8346
(2) + (3) 2.6733
(1) + (2) 2.6170
(1) + (6) 2.5661

3-feature
(1) + (3) + (4) 4.2184
(1) + (3) + (6) 4.0437

3. EXPERIMENTAL RESULTS

The study involved a multifactorial experiment in which radiation
of two different qualities (iron, gamma) were applied separately in
combination with TGFβ to cultured MCF10A cells. The radiation
qualities are varied to examine whether this parameter influences cel-
lular responses independently of toxicity. TGFβ belongs to a family
of cytokines and modulates cellular responses to radiation [9]. It
was added to mimic an effect of stromal cells on radiation response
in tissues. The data set used for this analysis consisted of a total of
13 treatment groups with 20 to 80 images in each group and up to
6000 cells per group. Table 1 summarizes the different treatment
groups.

3.1. Evaluation of phenotypic features
Segmentation of the nuclear and E-cadherin signals enables a multi-
variate representation of the phenotypic signature on a cell-cell ba-
sis. These measurements are then aggregated and ranked for com-
paring different treatment groups. Feature selection identifies an op-
timum subset of features for classification between different treat-
ment groups, as shown in Table 2. Fisher discriminant ratio is used
to measure the feature discriminating power.

3.2. Quantitative comparison of phenotypic variability
Fig. 3 shows loss of E-cadherin in irradiated samples, which is ac-
companied by an increase in the peakedness (kurtosis) of the distri-
bution. The relationship between the loss of E-cadherin and hetero-
geneity of the membrane signal is expected; however, Fig. 3 also
indicates that at equivalent radiation doses in the presence of TGFβ,
loss of heterogeneity with Fe is higher than with γ radiation. This
is an observation that can only be quantified through detailed analy-
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Fig. 3. Distribution and dose response of E-cadherin signal on a
cell-cell basis: Samples were treated with indicated doses of iron
and gamma irradiation to examine relative biological effects on E-
cadherin expression. Iron and gamma irradiation at equal toxicity
dosage is shown with the same color in the two figures. Above prob-
ability density functions are normalized with N (0, 1).
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Fig. 4. (a) Heat map of top 7 features with respect to the 13 treatment
groups on a cell-cell basis. (b) Dose response of E-cadherin on a
cell-cell basis indicates a sharper drop in the membrane protein in
low dosage as a result of Fe irradiation. The error-bars correspond
to the standard deviation of the signal at each dosage.

sis on a cell-cell basis, and appears to be dependent on the presence
of TGFβ. While this analysis is based on quantitation of a labeled
probe, the heat map in Fig. 4(a) indicates that size and structural
features (e.g., texture) of the nuclear region increase with Fe radia-
tion and TGFβ treatment when compared to of γ radiation. Through
cell-cell multivariate analysis, heterogeneity, hidden variables (e.g.,
size, texture) can be identified and visualized.

3.3. Classification of treatment groups

Table 3 summarizes classification accuracy between using single or
multiple features of treated and control groups. In most cases, a sin-
gle feature is sufficient for discrimination; however, in the absence
of TGFβ and presence of a high dosage of γ, additional features can
contribute to an improved classification.

Using the same strategy, we evaluated the classification accuracy
for Fe and γ irradiation. Results are shown in Table 4. Again com-
bining representations based on quantification of the labeled probe
and computed textured features results in an improved predictor for
separating treatment groups. It is interesting to note that at 1Gy
of Fe versus 2Gy of γ, variation of the E-cadherin signal per cell
is also an important indicator for improving classification accuracy.
Furthermore, the dose response curves are significantly different, as
shown in Fig. 4(b). This quantitative insight can only be revealed
through cell-cell analysis. Global florescence analysis hides the dif-
ferences in the dose-response curves.

Table 3. Classification accuracy of sham versus irradiated samples
computed through linear discriminant analysis.

Number of features 1 2 3
Sham vs. 0.5GyFe+TGFβ 90.16% 91.90% 92.75%
Sham vs. 1GyFe+TGFβ 90.58% 93.03% 94.48%

Sham vs. 1GyFe 79.30% 82.57% 85.12%
Sham vs. 1Gyγ+TGFβ 85.96% 93.01% 93.41%
Sham vs. 2Gyγ+TGFβ 89.61% 91.86% 92.71%

Sham vs. 2Gyγ 74.88% 88.18% 90.08%

Table 4. Classification accuracy of Fe versus γ irradiation is com-
puted through linear discriminant analysis.

Number of features 1 2 3
0.5GyFe+TGFβ vs. 72.73% 89.42% 89.49%1Gyγ+TGFβ
1GyFe+TGFβ vs. 59.36% 71.02% 71.80%2Gyγ+TGFβ
1GyFe vs. 2Gyγ 82.29% 92.87% 97.39%

4. CONCLUSIONS

Our computational protocol generates a coupled multivariate rep-
resentation of the spatial features for each cell and the membrane
bound proteins exhibiting continuous fluorescent signals along cell
surface boundaries. Experimental results demonstrate that multivari-
ate representation of cell-cell phenotypes improves predictive and
visualization capabilities among different treatment groups, and in-
creases quantitative sensitivity of cellular responses.
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